Continuity of solutions of linear, degenerate elliptic equations

Jani Onninen; Xiao Zhong

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)

  • Volume: 6, Issue: 1, page 103-116
  • ISSN: 0391-173X

Abstract

top
We consider the simplest form of a second order, linear, degenerate, elliptic equation with divergence structure in the plane. Under an integrability condition on the degenerate function, we prove that the solutions are continuous.

How to cite

top

Onninen, Jani, and Zhong, Xiao. "Continuity of solutions of linear, degenerate elliptic equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.1 (2007): 103-116. <http://eudml.org/doc/272279>.

@article{Onninen2007,
abstract = {We consider the simplest form of a second order, linear, degenerate, elliptic equation with divergence structure in the plane. Under an integrability condition on the degenerate function, we prove that the solutions are continuous.},
author = {Onninen, Jani, Zhong, Xiao},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {103-116},
publisher = {Scuola Normale Superiore, Pisa},
title = {Continuity of solutions of linear, degenerate elliptic equations},
url = {http://eudml.org/doc/272279},
volume = {6},
year = {2007},
}

TY - JOUR
AU - Onninen, Jani
AU - Zhong, Xiao
TI - Continuity of solutions of linear, degenerate elliptic equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 1
SP - 103
EP - 116
AB - We consider the simplest form of a second order, linear, degenerate, elliptic equation with divergence structure in the plane. Under an integrability condition on the degenerate function, we prove that the solutions are continuous.
LA - eng
UR - http://eudml.org/doc/272279
ER -

References

top
  1. [1] E. De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur.3 (1957), 25–43. Zbl0084.31901MR93649
  2. [2] E. De Giorgi, Congetture sulla continuità delle soluzioni di equazioni lineari ellittiche autoaggiunte a coefficienti illimitati, Unpublished, 1995. 
  3. [3] B. Franchi, R. Serapioni and F. Cassano, Irregular solutions of linear degenerate elliptic equations Potential Anal. 9 (1998), 201–216. Zbl0919.35050MR1666899
  4. [4] D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order” 2nd ed., Springer-Verlag, New York, 1983. Zbl0361.35003MR737190
  5. [5] G. H. Hardy, J. E. Littlewood and G. Polya, “Inequalities”, 2nd ed., Cambridge University Press, Cambridge, 1952. Zbl0634.26008MR46395JFM60.0169.01
  6. [6] T. Iwaniec, P. Koskela and J. Onninen, Mappings of finite distortion: monotonicity and continuity, Invent. Math.144 (2001), 507–531. Zbl1006.30016MR1833892
  7. [7] O. A. Ladyzhenskaya and N. N. Ural’tseva, “Linear and Quasilinear Elliptic Equations”, Academic Press, New York, 1968. Zbl0164.13002MR244627
  8. [8] H. Lebesgue, Sur le problème de Dirichlet. Rend. Circ. Mat. Palermo27 (1907), 371–402. JFM38.0392.01
  9. [9] J. J. Manfredi, Weakly monotone functions, J. Geom. Anal.4 (1994), 393–402. Zbl0805.35013MR1294334
  10. [10] N. G. Meyers, An L p -estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 189–206. Zbl0127.31904MR159110
  11. [11] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc.43 (1938), 126–166. Zbl0018.40501MR1501936JFM64.0460.02
  12. [12] C. B. Morrey, Multiple integral problems in the calculus of variations and related topics. Univ. California Publ. Math. (N. S.) 1 (1943), 1–130. Zbl0063.04107MR11537
  13. [13] J. Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math.13 (1960), 457–468. Zbl0111.09301MR170091
  14. [14] J. Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math.14 (1961), 577–591. Zbl0111.09302MR159138
  15. [15] J. Nash, Continuity of solutions of elliptic and parabolic equations, Amer. J. Math.80 (1958), 931–954. Zbl0096.06902MR100158
  16. [16] J. Onninen and X. Zhong, A note on mappings of finite distortion: the sharp modulus of continuity, Michigan Math. J.53 (2005), 329–335. Zbl1086.30025MR2152704
  17. [17] L. C. Piccinini and S. Spagnolo, On the Hölder continuity of solutions of second order elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 26 (1972), 391–402. Zbl0237.35028MR361422
  18. [18] J. Serrin, On the strong maximum principle for quasilinear second order differential inequalities, J. Funct. Anal.5 (1970), 184–193. Zbl0188.41701MR259328
  19. [19] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353–372. Zbl0353.46018MR463908
  20. [20] N. S. Trudinger, On Harnack type inequalities and their application to quasilinear, elliptic equations, Comm. Pure Appl. Math.20 (1967), 721–747. Zbl0153.42703MR226198
  21. [21] N. S. Trudinger, On the regularity of generalized solutions of linear, non-uniformly elliptic equations, Arch. Rational Mech. Anal.42 (1971), 51–62. Zbl0218.35035MR344656
  22. [22] K. O. Widman, On the Hölder continuity of solutions of elliptic partial differential equations in two variables with coefficients in L , Comm. Pure Appl. Math.22 (1969), 669–682. Zbl0183.11001MR251364

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.