On a semilinear elliptic equation in
Gianni Mancini; Kunnath Sandeep
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)
- Volume: 7, Issue: 4, page 635-671
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topMancini, Gianni, and Sandeep, Kunnath. "On a semilinear elliptic equation in $\mathbb {H}^n$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.4 (2008): 635-671. <http://eudml.org/doc/272284>.
@article{Mancini2008,
abstract = {We prove existence/nonexistence and uniqueness of positive entire solutions for some semilinear elliptic equations on the Hyperbolic space.},
author = {Mancini, Gianni, Sandeep, Kunnath},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {semilinear elliptic equation; hyperbolic space; positive solutions; finite energy solutions},
language = {eng},
number = {4},
pages = {635-671},
publisher = {Scuola Normale Superiore, Pisa},
title = {On a semilinear elliptic equation in $\mathbb \{H\}^n$},
url = {http://eudml.org/doc/272284},
volume = {7},
year = {2008},
}
TY - JOUR
AU - Mancini, Gianni
AU - Sandeep, Kunnath
TI - On a semilinear elliptic equation in $\mathbb {H}^n$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 4
SP - 635
EP - 671
AB - We prove existence/nonexistence and uniqueness of positive entire solutions for some semilinear elliptic equations on the Hyperbolic space.
LA - eng
KW - semilinear elliptic equation; hyperbolic space; positive solutions; finite energy solutions
UR - http://eudml.org/doc/272284
ER -
References
top- [1] L. Almeida, L. Damascelli and Y. Ge, A few symmetry results for nonlinear elliptic PDE on noncompact manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002), 313–342. Zbl1029.35096MR1956953
- [2] W. Beckner, On the Grushin operator and hyperbolic symmetry, Proc. Amer. Math. Soc.129 (2001), 1233–1246. Zbl0987.47037MR1709740
- [3] R. D. Benguria, R. L. Frank and M. Loss, The sharp constant in the Hardy-Sobolev-Maz’ya inequality in the three dimensional upper half-space, Math. Res. Lett.15 (2008), 613–622. Zbl1173.26011MR2424899
- [4] H. Berestycki, L. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math.47 (1994), 47–92. Zbl0806.35129MR1258192
- [5] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math.36 (1983), 437–477. Zbl0541.35029MR709644
- [6] M. Badiale and G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal.163 (2002), 259–293. Zbl1010.35041MR1918928
- [7] A. Bonfiglioli and F. Uguzzoni, Nonlinear Liouvile Theorems for some critical problems on H-type groups, J. Funct. Anal.207 (2004), 161–215. Zbl1045.35018MR2027639
- [8] D. Cao and Y.Y. Li, Results on positive solutions of elliptic equations with a critical Hardy-Sobolev operator, Methods Appl. Anal., in press. Zbl1179.35138MR2482211
- [9] D. Castorina, I. Fabbri, G. Mancini and K. Sandeep, Hardy Sobolev inequalities and hyperbolic symmetry, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.19 (2008), 189–197. Zbl1194.35146MR2439515
- [10] I. Chavel, “Eigenvalues in Riemannian Geometry", Pure and Applied Mathematics, 115, Academic Press, Inc., Orlando, FL, 1984. Zbl0551.53001MR768584
- [11] A. Coddington-Earl and N. Levinson, “Theory of Ordinary Differential Equations", TATA McGraw-Hill Publishing Co. LTD, New Delhi, 1985. Zbl0064.33002MR69338
- [12] L. D’Ambrosio, Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc.132 (2003), 725–734. Zbl1049.35077MR2019949
- [13] I. Fabbri, G. Mancini and K. Sandeep, Classification of solutions of a critical Hardy-Sobolev operator, J. Differential Equations224 (2006), 258–276. Zbl1208.35054MR2223717
- [14] V. Felli and F. Uguzzoni, Some existence results for the Webster scalar curvature problem in presence of symmetry, Ann. Mat. Pura Appl.183 (2004), 469–493. Zbl1105.35031MR2140526
- [15] N. Garofalo and D. Vassilev, Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J.106 (2001), 411–448. Zbl1012.35014MR1813232
- [16] M. Gazzini and R. Musina, Hardy-Sobolev-Maz’ya inequalities: symmetry and breaking symmetry of extremal functions, to appear on Contemp. Math. Zbl1183.35138MR2589572
- [17] E. Hebey, “Sobolev Spaces on Riemannian Manifolds", Lecture Notes in Mathematics, Vol. 635, Springer-Verlag, 1996. Zbl0866.58068MR1481970
- [18] Kwong, M.Kam-Li and Yi, Uniqueness of radial solutions of semilinear elliptic equations, Trans. Amer. Math. Soc. 333 (1992), 339–363. Zbl0785.35038MR1088021
- [19] A. Malchiodi and F. Uguzzoni, A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pure Appl.81 (2002), 983–997. Zbl1042.53025MR1946912
- [20] Maz’ya and G. Vladimir, “Sobolev Spaces", Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. MR817985
- [21] R. Musina, Ground state solutions of a critical problem involving cylindrical weights, Nonlinear Anal.68 (2008), 3972-3986. Zbl1141.35019MR2416099
- [22] R. Monti, Sobolev inequalities for weighted gradients, Comm. Partial Differential Equations31 (2006), 1479–1504. Zbl1138.46024MR2273962
- [23] R. Monti and D. Morbidelli, Kelvin transform for Grushin operators and critical semilinear equations, Duke Math. J.131 (2006), 167–202. Zbl1094.35036MR2219239
- [24] G. Mancini and K. Sandeep, Cylindrical symmetry of extremals of a Hardy-Sobolev inequality, Ann. Mat. Pura Appl. (4) 183 (2004), 165–172. Zbl1100.26013MR2075471
- [25] S. Secchi, D. Smets and M. Willem, Remarks on a Hardy-Sobolev inequality, C. R. Math. Acad. Sci. Paris336 (2003), 811–815. Zbl1035.35020MR1990020
- [26] S. Stapelkamp, The Brézis-Nirenberg problem on . Existence and uniqueness of solutions. Elliptic and parabolic problems, (Rolduc/Gaeta, 2001), 283–290, World Sci. Publ., River Edge, NJ, 2002. Zbl1109.35343MR1937548
- [27] S. Stapelkamp, “Das Brezis-Nirenberg Problem im Hn”, PhD thesis, Universität Basel, 2003.
- [28] A. Tertikas and K. Tintarev, On existence of minimizers for the Hardy-Sobolev-Maz’ya inequality, Ann. Mat. Pura Appl. (4) 186 (2007), 645–662. Zbl1206.35113MR2317783
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.