On a semilinear elliptic equation in n

Gianni Mancini; Kunnath Sandeep

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)

  • Volume: 7, Issue: 4, page 635-671
  • ISSN: 0391-173X

Abstract

top
We prove existence/nonexistence and uniqueness of positive entire solutions for some semilinear elliptic equations on the Hyperbolic space.

How to cite

top

Mancini, Gianni, and Sandeep, Kunnath. "On a semilinear elliptic equation in $\mathbb {H}^n$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.4 (2008): 635-671. <http://eudml.org/doc/272284>.

@article{Mancini2008,
abstract = {We prove existence/nonexistence and uniqueness of positive entire solutions for some semilinear elliptic equations on the Hyperbolic space.},
author = {Mancini, Gianni, Sandeep, Kunnath},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {semilinear elliptic equation; hyperbolic space; positive solutions; finite energy solutions},
language = {eng},
number = {4},
pages = {635-671},
publisher = {Scuola Normale Superiore, Pisa},
title = {On a semilinear elliptic equation in $\mathbb \{H\}^n$},
url = {http://eudml.org/doc/272284},
volume = {7},
year = {2008},
}

TY - JOUR
AU - Mancini, Gianni
AU - Sandeep, Kunnath
TI - On a semilinear elliptic equation in $\mathbb {H}^n$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 4
SP - 635
EP - 671
AB - We prove existence/nonexistence and uniqueness of positive entire solutions for some semilinear elliptic equations on the Hyperbolic space.
LA - eng
KW - semilinear elliptic equation; hyperbolic space; positive solutions; finite energy solutions
UR - http://eudml.org/doc/272284
ER -

References

top
  1. [1] L. Almeida, L. Damascelli and Y. Ge, A few symmetry results for nonlinear elliptic PDE on noncompact manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002), 313–342. Zbl1029.35096MR1956953
  2. [2] W. Beckner, On the Grushin operator and hyperbolic symmetry, Proc. Amer. Math. Soc.129 (2001), 1233–1246. Zbl0987.47037MR1709740
  3. [3] R. D. Benguria, R. L. Frank and M. Loss, The sharp constant in the Hardy-Sobolev-Maz’ya inequality in the three dimensional upper half-space, Math. Res. Lett.15 (2008), 613–622. Zbl1173.26011MR2424899
  4. [4] H. Berestycki, L. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math.47 (1994), 47–92. Zbl0806.35129MR1258192
  5. [5] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math.36 (1983), 437–477. Zbl0541.35029MR709644
  6. [6] M. Badiale and G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal.163 (2002), 259–293. Zbl1010.35041MR1918928
  7. [7] A. Bonfiglioli and F. Uguzzoni, Nonlinear Liouvile Theorems for some critical problems on H-type groups, J. Funct. Anal.207 (2004), 161–215. Zbl1045.35018MR2027639
  8. [8] D. Cao and Y.Y. Li, Results on positive solutions of elliptic equations with a critical Hardy-Sobolev operator, Methods Appl. Anal., in press. Zbl1179.35138MR2482211
  9. [9] D. Castorina, I. Fabbri, G. Mancini and K. Sandeep, Hardy Sobolev inequalities and hyperbolic symmetry, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.19 (2008), 189–197. Zbl1194.35146MR2439515
  10. [10] I. Chavel, “Eigenvalues in Riemannian Geometry", Pure and Applied Mathematics, 115, Academic Press, Inc., Orlando, FL, 1984. Zbl0551.53001MR768584
  11. [11] A. Coddington-Earl and N. Levinson, “Theory of Ordinary Differential Equations", TATA McGraw-Hill Publishing Co. LTD, New Delhi, 1985. Zbl0064.33002MR69338
  12. [12] L. D’Ambrosio, Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc.132 (2003), 725–734. Zbl1049.35077MR2019949
  13. [13] I. Fabbri, G. Mancini and K. Sandeep, Classification of solutions of a critical Hardy-Sobolev operator, J. Differential Equations224 (2006), 258–276. Zbl1208.35054MR2223717
  14. [14] V. Felli and F. Uguzzoni, Some existence results for the Webster scalar curvature problem in presence of symmetry, Ann. Mat. Pura Appl.183 (2004), 469–493. Zbl1105.35031MR2140526
  15. [15] N. Garofalo and D. Vassilev, Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J.106 (2001), 411–448. Zbl1012.35014MR1813232
  16. [16] M. Gazzini and R. Musina, Hardy-Sobolev-Maz’ya inequalities: symmetry and breaking symmetry of extremal functions, to appear on Contemp. Math. Zbl1183.35138MR2589572
  17. [17] E. Hebey, “Sobolev Spaces on Riemannian Manifolds", Lecture Notes in Mathematics, Vol. 635, Springer-Verlag, 1996. Zbl0866.58068MR1481970
  18. [18] Kwong, M.Kam-Li and Yi, Uniqueness of radial solutions of semilinear elliptic equations, Trans. Amer. Math. Soc. 333 (1992), 339–363. Zbl0785.35038MR1088021
  19. [19] A. Malchiodi and F. Uguzzoni, A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pure Appl.81 (2002), 983–997. Zbl1042.53025MR1946912
  20. [20] Maz’ya and G. Vladimir, “Sobolev Spaces", Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. MR817985
  21. [21] R. Musina, Ground state solutions of a critical problem involving cylindrical weights, Nonlinear Anal.68 (2008), 3972-3986. Zbl1141.35019MR2416099
  22. [22] R. Monti, Sobolev inequalities for weighted gradients, Comm. Partial Differential Equations31 (2006), 1479–1504. Zbl1138.46024MR2273962
  23. [23] R. Monti and D. Morbidelli, Kelvin transform for Grushin operators and critical semilinear equations, Duke Math. J.131 (2006), 167–202. Zbl1094.35036MR2219239
  24. [24] G. Mancini and K. Sandeep, Cylindrical symmetry of extremals of a Hardy-Sobolev inequality, Ann. Mat. Pura Appl. (4) 183 (2004), 165–172. Zbl1100.26013MR2075471
  25. [25] S. Secchi, D. Smets and M. Willem, Remarks on a Hardy-Sobolev inequality, C. R. Math. Acad. Sci. Paris336 (2003), 811–815. Zbl1035.35020MR1990020
  26. [26] S. Stapelkamp, The Brézis-Nirenberg problem on n . Existence and uniqueness of solutions. Elliptic and parabolic problems, (Rolduc/Gaeta, 2001), 283–290, World Sci. Publ., River Edge, NJ, 2002. Zbl1109.35343MR1937548
  27. [27] S. Stapelkamp, “Das Brezis-Nirenberg Problem im Hn”, PhD thesis, Universität Basel, 2003. 
  28. [28] A. Tertikas and K. Tintarev, On existence of minimizers for the Hardy-Sobolev-Maz’ya inequality, Ann. Mat. Pura Appl. (4) 186 (2007), 645–662. Zbl1206.35113MR2317783

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.