A few symmetry results for nonlinear elliptic PDE on noncompact manifolds
Luís Almeida; Lucio Damascelli; Yuxin Ge
Annales de l'I.H.P. Analyse non linéaire (2002)
- Volume: 19, Issue: 3, page 313-342
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [1] Alexandrov A., Uniqueness theorem for surfaces in the large, Vestnik Leningrad Univ. Math.11 (1956) 5-17. MR86338
- [2] Almeida L., Ge Y., Symmetry results for positive solutions of some elliptic equations on manifolds, Annals Global Anal. Geom.18 (2000) 153-170. Zbl0968.58015MR1744588
- [3] Berestycki H., Caffarelli L.A., Nirenberg L., Symmetry for elliptic equations in a half space, in: Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993, pp. 27-42. Zbl0793.35034MR1260436
- [4] Berestycki H., Caffarelli L.A., Nirenberg L., Inequalities for second order elliptic equations with applications to unbounded domains. I, Duke Math. J.81 (1996) 467-494. Zbl0860.35004MR1395408
- [5] Berestycki H., Caffarelli L.A., Nirenberg L., Monotonicity for elliptic equations in unbounded Lipshitz domains, Comm. Pure Appl. Math.50 (1997) 1089-1111. Zbl0906.35035MR1470317
- [6] Berestycki H., Caffarelli L.A., Nirenberg L., Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci.25 (1997) 69-94. Zbl1079.35513MR1655510
- [7] Berestycki H., Nirenberg L., On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat.22 (1991) 1-39. Zbl0784.35025MR1159383
- [8] Damascelli L., Pacella F., Ramaswamy M., Symmetry of ground states of p-Laplace equations via the moving plane method, Arch. Ration. Mech. Anal.148 (1999) 291-308. Zbl0937.35050MR1716666
- [9] Damascelli L., Ramaswamy M., Symmetry of C1 solutions of p-Laplace equations in RN, Advanced Nonlinear Studies1 (2001) 40-64. Zbl0998.35016MR1850203
- [10] Gidas B., Ni W.M., Nirenberg L., Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979) 209-243. Zbl0425.35020MR544879
- [11] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in RN, Adv. Math., Suppl. Stud.7A (1981) 369-402. Zbl0469.35052MR634248
- [12] Hebey E., Introduction à l'analyse non linéaire sur les variétés, Fondations, Diderot Editeur, Paris, 1997. Zbl0918.58001
- [13] Hebey E., Sobolev Spaces on Riemannian Manifolds, Lecture Notes in Mathematics, 1635, Springer-Verlag, Berlin, 1996. Zbl0866.58068MR1481970
- [14] Li C., Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Comm. Partial Differential Equations16 (1991) 585-615. Zbl0741.35014MR1113099
- [15] Li Y., Ni W.M., Radial symmetry of positive solutions of nonlinear elliptic equations in RN, Comm. Partial Differential Equations18 (1993) 1043-1054. Zbl0788.35042MR1218528
- [16] Serrin J., A symmetry problem in potential theory, Arch. Ration. Mech. Anal.43 (1971) 304-318. Zbl0222.31007MR333220
- [17] Serrin J., Zou H., Symmetry of ground states of quasilinear elliptic equations, Arch. Ration. Mech. Anal.148 (1999) 265-290. Zbl0940.35079MR1716665
- [18] Terracini S., Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions, Differential Integral Equations8 (1995) 1911-1922. Zbl0835.35055MR1348957
- [19] Terracini S., On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations1 (1996) 241-264. Zbl0847.35045MR1364003