A few symmetry results for nonlinear elliptic PDE on noncompact manifolds

Luís Almeida; Lucio Damascelli; Yuxin Ge

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 3, page 313-342
  • ISSN: 0294-1449

How to cite

top

Almeida, Luís, Damascelli, Lucio, and Ge, Yuxin. "A few symmetry results for nonlinear elliptic PDE on noncompact manifolds." Annales de l'I.H.P. Analyse non linéaire 19.3 (2002): 313-342. <http://eudml.org/doc/78547>.

@article{Almeida2002,
author = {Almeida, Luís, Damascelli, Lucio, Ge, Yuxin},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {variatonal technique; Sobolev inequalities; method of moving planes; geometric properties of the manifold; growth conditions},
language = {eng},
number = {3},
pages = {313-342},
publisher = {Elsevier},
title = {A few symmetry results for nonlinear elliptic PDE on noncompact manifolds},
url = {http://eudml.org/doc/78547},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Almeida, Luís
AU - Damascelli, Lucio
AU - Ge, Yuxin
TI - A few symmetry results for nonlinear elliptic PDE on noncompact manifolds
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 3
SP - 313
EP - 342
LA - eng
KW - variatonal technique; Sobolev inequalities; method of moving planes; geometric properties of the manifold; growth conditions
UR - http://eudml.org/doc/78547
ER -

References

top
  1. [1] Alexandrov A., Uniqueness theorem for surfaces in the large, Vestnik Leningrad Univ. Math.11 (1956) 5-17. MR86338
  2. [2] Almeida L., Ge Y., Symmetry results for positive solutions of some elliptic equations on manifolds, Annals Global Anal. Geom.18 (2000) 153-170. Zbl0968.58015MR1744588
  3. [3] Berestycki H., Caffarelli L.A., Nirenberg L., Symmetry for elliptic equations in a half space, in: Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993, pp. 27-42. Zbl0793.35034MR1260436
  4. [4] Berestycki H., Caffarelli L.A., Nirenberg L., Inequalities for second order elliptic equations with applications to unbounded domains. I, Duke Math. J.81 (1996) 467-494. Zbl0860.35004MR1395408
  5. [5] Berestycki H., Caffarelli L.A., Nirenberg L., Monotonicity for elliptic equations in unbounded Lipshitz domains, Comm. Pure Appl. Math.50 (1997) 1089-1111. Zbl0906.35035MR1470317
  6. [6] Berestycki H., Caffarelli L.A., Nirenberg L., Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci.25 (1997) 69-94. Zbl1079.35513MR1655510
  7. [7] Berestycki H., Nirenberg L., On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat.22 (1991) 1-39. Zbl0784.35025MR1159383
  8. [8] Damascelli L., Pacella F., Ramaswamy M., Symmetry of ground states of p-Laplace equations via the moving plane method, Arch. Ration. Mech. Anal.148 (1999) 291-308. Zbl0937.35050MR1716666
  9. [9] Damascelli L., Ramaswamy M., Symmetry of C1 solutions of p-Laplace equations in RN, Advanced Nonlinear Studies1 (2001) 40-64. Zbl0998.35016MR1850203
  10. [10] Gidas B., Ni W.M., Nirenberg L., Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979) 209-243. Zbl0425.35020MR544879
  11. [11] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in RN, Adv. Math., Suppl. Stud.7A (1981) 369-402. Zbl0469.35052MR634248
  12. [12] Hebey E., Introduction à l'analyse non linéaire sur les variétés, Fondations, Diderot Editeur, Paris, 1997. Zbl0918.58001
  13. [13] Hebey E., Sobolev Spaces on Riemannian Manifolds, Lecture Notes in Mathematics, 1635, Springer-Verlag, Berlin, 1996. Zbl0866.58068MR1481970
  14. [14] Li C., Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Comm. Partial Differential Equations16 (1991) 585-615. Zbl0741.35014MR1113099
  15. [15] Li Y., Ni W.M., Radial symmetry of positive solutions of nonlinear elliptic equations in RN, Comm. Partial Differential Equations18 (1993) 1043-1054. Zbl0788.35042MR1218528
  16. [16] Serrin J., A symmetry problem in potential theory, Arch. Ration. Mech. Anal.43 (1971) 304-318. Zbl0222.31007MR333220
  17. [17] Serrin J., Zou H., Symmetry of ground states of quasilinear elliptic equations, Arch. Ration. Mech. Anal.148 (1999) 265-290. Zbl0940.35079MR1716665
  18. [18] Terracini S., Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions, Differential Integral Equations8 (1995) 1911-1922. Zbl0835.35055MR1348957
  19. [19] Terracini S., On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations1 (1996) 241-264. Zbl0847.35045MR1364003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.