A few symmetry results for nonlinear elliptic PDE on noncompact manifolds
Luís Almeida; Lucio Damascelli; Yuxin Ge
Annales de l'I.H.P. Analyse non linéaire (2002)
- Volume: 19, Issue: 3, page 313-342
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAlmeida, Luís, Damascelli, Lucio, and Ge, Yuxin. "A few symmetry results for nonlinear elliptic PDE on noncompact manifolds." Annales de l'I.H.P. Analyse non linéaire 19.3 (2002): 313-342. <http://eudml.org/doc/78547>.
@article{Almeida2002,
author = {Almeida, Luís, Damascelli, Lucio, Ge, Yuxin},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {variatonal technique; Sobolev inequalities; method of moving planes; geometric properties of the manifold; growth conditions},
language = {eng},
number = {3},
pages = {313-342},
publisher = {Elsevier},
title = {A few symmetry results for nonlinear elliptic PDE on noncompact manifolds},
url = {http://eudml.org/doc/78547},
volume = {19},
year = {2002},
}
TY - JOUR
AU - Almeida, Luís
AU - Damascelli, Lucio
AU - Ge, Yuxin
TI - A few symmetry results for nonlinear elliptic PDE on noncompact manifolds
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 3
SP - 313
EP - 342
LA - eng
KW - variatonal technique; Sobolev inequalities; method of moving planes; geometric properties of the manifold; growth conditions
UR - http://eudml.org/doc/78547
ER -
References
top- [1] Alexandrov A., Uniqueness theorem for surfaces in the large, Vestnik Leningrad Univ. Math.11 (1956) 5-17. MR86338
- [2] Almeida L., Ge Y., Symmetry results for positive solutions of some elliptic equations on manifolds, Annals Global Anal. Geom.18 (2000) 153-170. Zbl0968.58015MR1744588
- [3] Berestycki H., Caffarelli L.A., Nirenberg L., Symmetry for elliptic equations in a half space, in: Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993, pp. 27-42. Zbl0793.35034MR1260436
- [4] Berestycki H., Caffarelli L.A., Nirenberg L., Inequalities for second order elliptic equations with applications to unbounded domains. I, Duke Math. J.81 (1996) 467-494. Zbl0860.35004MR1395408
- [5] Berestycki H., Caffarelli L.A., Nirenberg L., Monotonicity for elliptic equations in unbounded Lipshitz domains, Comm. Pure Appl. Math.50 (1997) 1089-1111. Zbl0906.35035MR1470317
- [6] Berestycki H., Caffarelli L.A., Nirenberg L., Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci.25 (1997) 69-94. Zbl1079.35513MR1655510
- [7] Berestycki H., Nirenberg L., On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat.22 (1991) 1-39. Zbl0784.35025MR1159383
- [8] Damascelli L., Pacella F., Ramaswamy M., Symmetry of ground states of p-Laplace equations via the moving plane method, Arch. Ration. Mech. Anal.148 (1999) 291-308. Zbl0937.35050MR1716666
- [9] Damascelli L., Ramaswamy M., Symmetry of C1 solutions of p-Laplace equations in RN, Advanced Nonlinear Studies1 (2001) 40-64. Zbl0998.35016MR1850203
- [10] Gidas B., Ni W.M., Nirenberg L., Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979) 209-243. Zbl0425.35020MR544879
- [11] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in RN, Adv. Math., Suppl. Stud.7A (1981) 369-402. Zbl0469.35052MR634248
- [12] Hebey E., Introduction à l'analyse non linéaire sur les variétés, Fondations, Diderot Editeur, Paris, 1997. Zbl0918.58001
- [13] Hebey E., Sobolev Spaces on Riemannian Manifolds, Lecture Notes in Mathematics, 1635, Springer-Verlag, Berlin, 1996. Zbl0866.58068MR1481970
- [14] Li C., Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Comm. Partial Differential Equations16 (1991) 585-615. Zbl0741.35014MR1113099
- [15] Li Y., Ni W.M., Radial symmetry of positive solutions of nonlinear elliptic equations in RN, Comm. Partial Differential Equations18 (1993) 1043-1054. Zbl0788.35042MR1218528
- [16] Serrin J., A symmetry problem in potential theory, Arch. Ration. Mech. Anal.43 (1971) 304-318. Zbl0222.31007MR333220
- [17] Serrin J., Zou H., Symmetry of ground states of quasilinear elliptic equations, Arch. Ration. Mech. Anal.148 (1999) 265-290. Zbl0940.35079MR1716665
- [18] Terracini S., Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions, Differential Integral Equations8 (1995) 1911-1922. Zbl0835.35055MR1348957
- [19] Terracini S., On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations1 (1996) 241-264. Zbl0847.35045MR1364003
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.