One-dimensional symmetry of periodic minimizers for a mean field equation

Chang-Shou Lin; Marcello Lucia

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)

  • Volume: 6, Issue: 2, page 269-290
  • ISSN: 0391-173X

Abstract

top
We consider on a two-dimensional flat torus T defined by a rectangular periodic cell the following equation Δ u + ρ e u T e u - 1 | T | = 0 , T u = 0 . It is well-known that the associated energy functional admits a minimizer for each ρ 8 π . The present paper shows that these minimizers depend actually only on one variable. As a consequence, setting λ 1 ( T ) to be the first eigenvalue of the Laplacian on the torus, the minimizers are identically zero whenever ρ min { 8 π , λ 1 ( T ) | T | } . Our results hold more generally for solutions that are Steiner symmetric, up to a translation.

How to cite

top

Lin, Chang-Shou, and Lucia, Marcello. "One-dimensional symmetry of periodic minimizers for a mean field equation." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.2 (2007): 269-290. <http://eudml.org/doc/272285>.

@article{Lin2007,
abstract = {We consider on a two-dimensional flat torus $T$ defined by a rectangular periodic cell the following equation\[ \Delta u + \rho \left( \frac\{e^u\}\{\int \_\{T\} e^u\} - \frac\{1\}\{|T|\} \right) = 0, \quad \int \_\{T\} u = 0. \]It is well-known that the associated energy functional admits a minimizer for each $\rho \le 8 \pi $. The present paper shows that these minimizers depend actually only on one variable. As a consequence, setting $\lambda _1 (T)$ to be the first eigenvalue of the Laplacian on the torus, the minimizers are identically zero whenever $\rho \le \min \lbrace 8 \pi , \lambda _1 (T) |T| \rbrace $. Our results hold more generally for solutions that are Steiner symmetric, up to a translation.},
author = {Lin, Chang-Shou, Lucia, Marcello},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {269-290},
publisher = {Scuola Normale Superiore, Pisa},
title = {One-dimensional symmetry of periodic minimizers for a mean field equation},
url = {http://eudml.org/doc/272285},
volume = {6},
year = {2007},
}

TY - JOUR
AU - Lin, Chang-Shou
AU - Lucia, Marcello
TI - One-dimensional symmetry of periodic minimizers for a mean field equation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 2
SP - 269
EP - 290
AB - We consider on a two-dimensional flat torus $T$ defined by a rectangular periodic cell the following equation\[ \Delta u + \rho \left( \frac{e^u}{\int _{T} e^u} - \frac{1}{|T|} \right) = 0, \quad \int _{T} u = 0. \]It is well-known that the associated energy functional admits a minimizer for each $\rho \le 8 \pi $. The present paper shows that these minimizers depend actually only on one variable. As a consequence, setting $\lambda _1 (T)$ to be the first eigenvalue of the Laplacian on the torus, the minimizers are identically zero whenever $\rho \le \min \lbrace 8 \pi , \lambda _1 (T) |T| \rbrace $. Our results hold more generally for solutions that are Steiner symmetric, up to a translation.
LA - eng
UR - http://eudml.org/doc/272285
ER -

References

top
  1. [1] C. Bandle, “Isoperimetric Inequalities and Applications”, Pitman, London, 1980. Zbl0519.53037MR572958
  2. [2] G. Bol, Isoperimetrische Ungleichungen fur Bereiche auf Flächen, Jahresber. Deutschen Math. Vereinigung51 (1941), 219–257. Zbl0026.08901MR18858JFM67.0697.02
  3. [3] X. Cabré, M. Lucia and M. Sanchón, A mean field equation on a torus: one-dimensional symmetry of solutions, Comm. Partial Differential Equations30 (2005), 1315–1330. Zbl1115.35041MR2180306
  4. [4] S.-Y. A. Chang, C.-C. Chen and C.-S. Lin, Extremal functions for a mean field equation in two dimension, In: “Lecture on Partial Differential Equations”, New Stud. Adv. Math., 2, Int. Press, Somerville, MA, 2003, 61–93. Zbl1071.35040MR2055839
  5. [5] S. Chanillo and M. Kiessling, Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Comm. Math. Phys.160 (1994), 217–238. Zbl0821.35044MR1262195
  6. [6] C.-C. Chen and C.-S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math.55 (2002), 728–771. Zbl1040.53046MR1885666
  7. [7] C.-C. Chen and C.-S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math.56 (2003), 1667–1727. Zbl1032.58010MR2001443
  8. [8] C.-C. Chen, C.-S. Lin and G. Wang, Concentration phenomena of two-vortex solutions in a Chern-Simons model, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (2004), 367–397. Zbl1170.35413MR2075988
  9. [9] S.-Y. Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv.51 (1976), 43–55. Zbl0334.35022MR397805
  10. [10] W. Ding, J. Jost, J. Li and G. Wang, The differential equation Δ u = 8 π - 8 π h e u on a compact Riemann surface, Asian J. Math.1 (1997), 230–248. Zbl0955.58010MR1491984
  11. [11] L. Fontana, Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helv.68 (1993), 415–454. Zbl0844.58082MR1236762
  12. [12] M. E. Gurtin and H. Matano, On the structure of equilibrium phase transitions within the gradient theory of fluids, Quart. Appl. Math.46 (1988), 301–317. Zbl0665.76120MR950604
  13. [13] C.-W. Hong, A best constant and the Gaussian curvature, Proc. Amer. Math. Soc.97 (1986), 737–747. Zbl0603.58056MR845999
  14. [14] B. Kawohl, “Rearrangements and Convexity of Level Sets in PDE”, Lecture Notes in Mathematics, Vol. 1150, Springer-Verlag, 1985. Zbl0593.35002MR810619
  15. [15] C.-S. Lin, Uniqueness of solutions to the mean field equations for the spherical Onsager vortex, Arch. Ration. Mech. Anal.153 (2000), 153–176. Zbl0968.35045MR1770683
  16. [16] C.-S. Lin, Topological degree for mean field equations on S 2 , Duke Math. J.104 (2000), 501–536. Zbl0964.35038MR1781481
  17. [17] C.-S. Lin and M. Lucia, Uniqueness of solutions for a mean field equation on the torus, J. Differential Equations229 (2006), 172–185. Zbl1105.58005MR2265623
  18. [18] M. H. A. Newman, “Elements of the Topology of Plane Sets of Points”, 2nd ed., University Press, Cambridge, 1951. Zbl0045.44003MR44820
  19. [19] M. Nolasco and G. Tarantello, On a sharp Sobolev-type inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal.145 (1998), 161–195. Zbl0980.46022MR1664542
  20. [20] E. Onofri, On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys.86 (1982), 321–326. Zbl0506.47031MR677001
  21. [21] L. E. Payne, On two conjectures in the fixed membrane eigenvalue problem, Z. Angew. Math. Phys.24 (1973), 721–729. Zbl0272.35058MR333487
  22. [22] G. Pólya and G. Szegö, “Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies”, Vol. 27, Princeton University Press, Princeton, N. J., 1951. Zbl0044.38301MR43486
  23. [23] T. Ricciardi and G. Tarantello, On a periodic boundary value problem with exponential nonlinearities, Differential Integral Equations11 (1998), 745–753. Zbl1015.34008MR1664758
  24. [24] M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons Gauge theory, Boll. Unione Mat. Ital, Sez. B, Artic. Mat. B (8) 1 (1998), 109–121. Zbl0912.58046MR1619043
  25. [25] T. Suzuki, Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire9 (1992), 367–397. Zbl0785.35045MR1186683
  26. [26] G. T. Whyburn, “Topological Analysis”, Princeton Mathematical Series, Vol. 23, Princeton University Press, Princeton, N. J., 1958. Zbl0186.55901MR99642
  27. [27] G. Whyburn and E. Duda, “Dynamic Topology”, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1979. Zbl0421.54001MR526764

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.