One-dimensional symmetry of periodic minimizers for a mean field equation
Chang-Shou Lin; Marcello Lucia
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)
- Volume: 6, Issue: 2, page 269-290
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topLin, Chang-Shou, and Lucia, Marcello. "One-dimensional symmetry of periodic minimizers for a mean field equation." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.2 (2007): 269-290. <http://eudml.org/doc/272285>.
@article{Lin2007,
abstract = {We consider on a two-dimensional flat torus $T$ defined by a rectangular periodic cell the following equation\[ \Delta u + \rho \left( \frac\{e^u\}\{\int \_\{T\} e^u\} - \frac\{1\}\{|T|\} \right) = 0, \quad \int \_\{T\} u = 0. \]It is well-known that the associated energy functional admits a minimizer for each $\rho \le 8 \pi $. The present paper shows that these minimizers depend actually only on one variable. As a consequence, setting $\lambda _1 (T)$ to be the first eigenvalue of the Laplacian on the torus, the minimizers are identically zero whenever $\rho \le \min \lbrace 8 \pi , \lambda _1 (T) |T| \rbrace $. Our results hold more generally for solutions that are Steiner symmetric, up to a translation.},
author = {Lin, Chang-Shou, Lucia, Marcello},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {269-290},
publisher = {Scuola Normale Superiore, Pisa},
title = {One-dimensional symmetry of periodic minimizers for a mean field equation},
url = {http://eudml.org/doc/272285},
volume = {6},
year = {2007},
}
TY - JOUR
AU - Lin, Chang-Shou
AU - Lucia, Marcello
TI - One-dimensional symmetry of periodic minimizers for a mean field equation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 2
SP - 269
EP - 290
AB - We consider on a two-dimensional flat torus $T$ defined by a rectangular periodic cell the following equation\[ \Delta u + \rho \left( \frac{e^u}{\int _{T} e^u} - \frac{1}{|T|} \right) = 0, \quad \int _{T} u = 0. \]It is well-known that the associated energy functional admits a minimizer for each $\rho \le 8 \pi $. The present paper shows that these minimizers depend actually only on one variable. As a consequence, setting $\lambda _1 (T)$ to be the first eigenvalue of the Laplacian on the torus, the minimizers are identically zero whenever $\rho \le \min \lbrace 8 \pi , \lambda _1 (T) |T| \rbrace $. Our results hold more generally for solutions that are Steiner symmetric, up to a translation.
LA - eng
UR - http://eudml.org/doc/272285
ER -
References
top- [1] C. Bandle, “Isoperimetric Inequalities and Applications”, Pitman, London, 1980. Zbl0519.53037MR572958
- [2] G. Bol, Isoperimetrische Ungleichungen fur Bereiche auf Flächen, Jahresber. Deutschen Math. Vereinigung51 (1941), 219–257. Zbl0026.08901MR18858JFM67.0697.02
- [3] X. Cabré, M. Lucia and M. Sanchón, A mean field equation on a torus: one-dimensional symmetry of solutions, Comm. Partial Differential Equations30 (2005), 1315–1330. Zbl1115.35041MR2180306
- [4] S.-Y. A. Chang, C.-C. Chen and C.-S. Lin, Extremal functions for a mean field equation in two dimension, In: “Lecture on Partial Differential Equations”, New Stud. Adv. Math., 2, Int. Press, Somerville, MA, 2003, 61–93. Zbl1071.35040MR2055839
- [5] S. Chanillo and M. Kiessling, Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Comm. Math. Phys.160 (1994), 217–238. Zbl0821.35044MR1262195
- [6] C.-C. Chen and C.-S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math.55 (2002), 728–771. Zbl1040.53046MR1885666
- [7] C.-C. Chen and C.-S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math.56 (2003), 1667–1727. Zbl1032.58010MR2001443
- [8] C.-C. Chen, C.-S. Lin and G. Wang, Concentration phenomena of two-vortex solutions in a Chern-Simons model, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (2004), 367–397. Zbl1170.35413MR2075988
- [9] S.-Y. Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv.51 (1976), 43–55. Zbl0334.35022MR397805
- [10] W. Ding, J. Jost, J. Li and G. Wang, The differential equation on a compact Riemann surface, Asian J. Math.1 (1997), 230–248. Zbl0955.58010MR1491984
- [11] L. Fontana, Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helv.68 (1993), 415–454. Zbl0844.58082MR1236762
- [12] M. E. Gurtin and H. Matano, On the structure of equilibrium phase transitions within the gradient theory of fluids, Quart. Appl. Math.46 (1988), 301–317. Zbl0665.76120MR950604
- [13] C.-W. Hong, A best constant and the Gaussian curvature, Proc. Amer. Math. Soc.97 (1986), 737–747. Zbl0603.58056MR845999
- [14] B. Kawohl, “Rearrangements and Convexity of Level Sets in PDE”, Lecture Notes in Mathematics, Vol. 1150, Springer-Verlag, 1985. Zbl0593.35002MR810619
- [15] C.-S. Lin, Uniqueness of solutions to the mean field equations for the spherical Onsager vortex, Arch. Ration. Mech. Anal.153 (2000), 153–176. Zbl0968.35045MR1770683
- [16] C.-S. Lin, Topological degree for mean field equations on , Duke Math. J.104 (2000), 501–536. Zbl0964.35038MR1781481
- [17] C.-S. Lin and M. Lucia, Uniqueness of solutions for a mean field equation on the torus, J. Differential Equations229 (2006), 172–185. Zbl1105.58005MR2265623
- [18] M. H. A. Newman, “Elements of the Topology of Plane Sets of Points”, 2nd ed., University Press, Cambridge, 1951. Zbl0045.44003MR44820
- [19] M. Nolasco and G. Tarantello, On a sharp Sobolev-type inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal.145 (1998), 161–195. Zbl0980.46022MR1664542
- [20] E. Onofri, On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys.86 (1982), 321–326. Zbl0506.47031MR677001
- [21] L. E. Payne, On two conjectures in the fixed membrane eigenvalue problem, Z. Angew. Math. Phys.24 (1973), 721–729. Zbl0272.35058MR333487
- [22] G. Pólya and G. Szegö, “Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies”, Vol. 27, Princeton University Press, Princeton, N. J., 1951. Zbl0044.38301MR43486
- [23] T. Ricciardi and G. Tarantello, On a periodic boundary value problem with exponential nonlinearities, Differential Integral Equations11 (1998), 745–753. Zbl1015.34008MR1664758
- [24] M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons Gauge theory, Boll. Unione Mat. Ital, Sez. B, Artic. Mat. B (8) 1 (1998), 109–121. Zbl0912.58046MR1619043
- [25] T. Suzuki, Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire9 (1992), 367–397. Zbl0785.35045MR1186683
- [26] G. T. Whyburn, “Topological Analysis”, Princeton Mathematical Series, Vol. 23, Princeton University Press, Princeton, N. J., 1958. Zbl0186.55901MR99642
- [27] G. Whyburn and E. Duda, “Dynamic Topology”, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1979. Zbl0421.54001MR526764
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.