Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation
Jacques Giacomoni; Ian Schindler; Peter Takáč
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)
- Volume: 6, Issue: 1, page 117-158
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topGiacomoni, Jacques, Schindler, Ian, and Takáč, Peter. "Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.1 (2007): 117-158. <http://eudml.org/doc/272290>.
@article{Giacomoni2007,
abstract = {We investigate the following quasilinear and singular problem,\[ \hbox\{t\}o 2.7cm\{\}\left\lbrace \begin\{array\}\{ll\} - \Delta \_p u = \frac\{\lambda \}\{u^\delta \} + u^q \quad & \mbox\{ in \}\,\Omega ;\\ u\vert \_\{\partial \Omega \} = 0 ,\quad u > 0\quad & \mbox\{ in \}\,\Omega , \end\{array\} \right.\hbox\{t\}o 2.7cm\{\}\hbox\{ \{\rm (P)\}\} \]where $\Omega $ is an open bounded domain with smooth boundary, $1 < p < \infty $, $p-1 < q\le p^\{*\} - 1$, $\lambda > 0$, and $0 < \delta < 1$. As usual, $p^\{*\} = \frac\{Np\}\{N-p\}$ if $1 < p < N$, $p^\{*\}\in (p,\infty )$ is arbitrarily large if $p = N$, and $p^\{*\} = \infty $ if $p > N$. We employ variational methods in order to show the existence of at least two distinct (positive) solutions of problem (P) in $W_0^\{1,p\}(\Omega )$. While following an approach due to Ambrosetti-Brezis-Cerami, we need to prove two new results of separate interest: a strong comparison principle and a regularity result for solutions to problem (P) in $C^\{1,\beta \}(\overline\{\Omega \})$ with some $\beta \in (0,1)$. Furthermore, we show that $\delta < 1$ is a reasonable sufficient (and likely optimal) condition to obtain solutions of problem (P) in $C^1(\overline\{\Omega \})$.},
author = {Giacomoni, Jacques, Schindler, Ian, Takáč, Peter},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {quasilinear equation; singular equation; positive solutions; multiplicity; regularity; comparison principle; local minimizer; saddle point},
language = {eng},
number = {1},
pages = {117-158},
publisher = {Scuola Normale Superiore, Pisa},
title = {Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation},
url = {http://eudml.org/doc/272290},
volume = {6},
year = {2007},
}
TY - JOUR
AU - Giacomoni, Jacques
AU - Schindler, Ian
AU - Takáč, Peter
TI - Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 1
SP - 117
EP - 158
AB - We investigate the following quasilinear and singular problem,\[ \hbox{t}o 2.7cm{}\left\lbrace \begin{array}{ll} - \Delta _p u = \frac{\lambda }{u^\delta } + u^q \quad & \mbox{ in }\,\Omega ;\\ u\vert _{\partial \Omega } = 0 ,\quad u > 0\quad & \mbox{ in }\,\Omega , \end{array} \right.\hbox{t}o 2.7cm{}\hbox{ {\rm (P)}} \]where $\Omega $ is an open bounded domain with smooth boundary, $1 < p < \infty $, $p-1 < q\le p^{*} - 1$, $\lambda > 0$, and $0 < \delta < 1$. As usual, $p^{*} = \frac{Np}{N-p}$ if $1 < p < N$, $p^{*}\in (p,\infty )$ is arbitrarily large if $p = N$, and $p^{*} = \infty $ if $p > N$. We employ variational methods in order to show the existence of at least two distinct (positive) solutions of problem (P) in $W_0^{1,p}(\Omega )$. While following an approach due to Ambrosetti-Brezis-Cerami, we need to prove two new results of separate interest: a strong comparison principle and a regularity result for solutions to problem (P) in $C^{1,\beta }(\overline{\Omega })$ with some $\beta \in (0,1)$. Furthermore, we show that $\delta < 1$ is a reasonable sufficient (and likely optimal) condition to obtain solutions of problem (P) in $C^1(\overline{\Omega })$.
LA - eng
KW - quasilinear equation; singular equation; positive solutions; multiplicity; regularity; comparison principle; local minimizer; saddle point
UR - http://eudml.org/doc/272290
ER -
References
top- [1] Adimurthi and J. Giacomoni, Multiplicity of positive solutions for a singular and critical elliptic problem in , Commun. Contemp. Math. 8 (2006), 621–656. Zbl1202.35087MR2263949
- [2] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convexe nonlinearities in some elliptic problems, J. Funct. Anal.122 (1994), 519–543. Zbl0805.35028MR1276168
- [3] A. Ambrosetti, J. P. García Azorero and I. Peral Alonso, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal.137 (1996), 219–242. Zbl0852.35045MR1383017
- [4] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973), 349–381. Zbl0273.49063MR370183
- [5] A. Anane, Simplicité et isolation de la première valeur propre du -laplacien avec poids, C.R. Acad. Sci. Paris, Sér. I-Math. 305 (1987), 725–728. Zbl0633.35061MR920052
- [6] A. Anane, “Etude des valeurs propres et de la résonance pour l’opérateur -Laplacien", Thèse de doctorat, Université Libre de Bruxelles, 1988, Brussels.
- [7] C. Aranda and T. Godoy, Existence and multiplicity of positive solutions for a singular problem associated to the -Laplacian operator, Electron. J. Differential Equations132 (2004), 1–15. Zbl1129.35365MR2108903
- [8] F. V. Atkinson and L. A. Peletier, Emden-Fowler equations involving critical exponents, Nonlinear Anal.10 (1986), 755–776. Zbl0662.34024MR851145
- [9] L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal.19 (1992), 581–597. Zbl0783.35020MR1183665
- [10] H. Brezis and E. Lieb, A relation between point convergence of functions and convergence of functionals, Proc. Amer. Math. Soc.88 (1983), 486–490. Zbl0526.46037MR699419
- [11] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equation involving the critical Sobolev exponent, Comm. Pure Appl. Math.36 (1983), 437–477. Zbl0541.35029MR709644
- [12] H. Brezis and L. Nirenberg, Minima locaux relatifs à et , C.R. Acad. Sci. Paris, Sér. I-Math. 317 (1993), 465–472. Zbl0803.35029
- [13] M. M. Coclite and G. Palmieri, On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations14 (1989), 1315–1327. Zbl0692.35047MR1022988
- [14] M. Cuesta and P. Takáč, A strong comparison principle for positive solutions of degenerate elliptic equations, Differential Integral Equations13 (2000), 721–746. Zbl0973.35077MR1750048
- [15] M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations2 (1977), 193–222. Zbl0362.35031MR427826
- [16] K. Deimling, “Nonlinear Functional Analysis”, Springer–Verlag, Berlin–Heidelberg–New York, 1985. Zbl0559.47040MR787404
- [17] J. I. Díaz and J. E. Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C.R. Acad. Sci. Paris, Sér. I-Math. 305 (1987), 521–524. Zbl0656.35039MR916325
- [18] J. I. Díaz, J. M. Morel and L. Oswald, An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations12 (1987), 1333–1344. Zbl0634.35031MR912208
- [19] E. DiBenedetto, local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal.7 (1983), 827–850. Zbl0539.35027MR709038
- [20] J. P. García Azorero and I. Peral Alonso, Some results about the existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math. J.43 (1994), 941–957. Zbl0822.35048MR1305954
- [21] J. P. García Azorero, I. Peral Alonso and J. J. Manfredi, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math.2 (2000), 385–404. Zbl0965.35067MR1776988
- [22] J. Giacomoni and K. Sreenadh, Multiplicity results for a singular and quasilinear equation, submitted for publication. Zbl1163.35356
- [23] M. Giaquinta, “Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems”, Annals of Mathematics Studies, Princeton University Press, Princeton, N.J., 1983. Zbl0516.49003MR717034
- [24] M. Giaquinta and E. Giusti, Global -regularity for second order quasilinear elliptic equations in divergence form, J. Reine Angew. Math.351 (1984), 55–65. Zbl0528.35014MR749677
- [25] N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire6 (1989), 321–330. Zbl0711.58008MR1030853
- [26] N. Ghoussoub and C. Yuan, Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy Exponents, Trans. Amer. Math. Soc.352 (2000), 5703–5743. Zbl0956.35056MR1695021
- [27] M. Guedda and L. Véron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal.13 (1989), 879–902. Zbl0714.35032MR1009077
- [28] D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order”, Springer-Verlag, New-York, 1983. Zbl0361.35003MR737190
- [29] Y. Haitao, Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem, J. Differential Equations189 (2003), 487–512. Zbl1034.35038MR1964476
- [30] J. Hernández, F. Mancebo and J. M. Vega, On the linearization of some singular, nonlinear elliptic problems and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002), 777–813. Zbl1020.35065MR1939086
- [31] N. Hirano, C. Saccon and N. Shioji, Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities, Adv. Differential Equations9 (2004), 197–220. Zbl05054519MR2099611
- [32] A. C. Lazer and P. J. Mckenna, On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc.111 (1991), 721–730. Zbl0727.35057MR1037213
- [33] G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal.12 (1988), 1203–1219. Zbl0675.35042MR969499
- [34] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J.20 (1971), 1077–1092. Zbl0213.13001MR301504
- [35] Z. Nehari, On a class of nonlinear second order differential equations, Trans. Amer. Math. Soc.95 (1960), 101–123. Zbl0097.29501MR111898
- [36] R. R. Phelps, “Convex Functions, Monotone Operators, and Differentiability”, Lecture notes in Mathematics, Vol. 1364, Springer-Verlag, Berlin, 1993. Zbl0921.46039MR1238715
- [37] S. Prashanth and K. Sreenadh, Multiplicity Results in a ball for Laplace equation in a ball with positive nonlinearity, Adv. Differential Equations7 (2002), 877–896. Zbl1033.35039MR1895169
- [38] I. Schindler, Quasilinear elliptic boundary-value problems on unbounded cylinders and a related mountain-pass lemma, Arch. Rational Mech. Anal.120 (1992), 363–374. Zbl0784.35029MR1185567
- [39] J. B. Serrin, Local behavior of solutions of quasilinear elliptic equations, Acta Math.111 (1964), 247–302. Zbl0128.09101MR170096
- [40] P. Takáč, On the Fredholm alternative for the -Laplacian at the first eigenvalue, Indiana Univ. Math. J.51 (2002), 187–237. Zbl1035.35046MR1896161
- [41] P. Tolksdorf, On the Dirichlet problem for quasilinear equations in domans with conical boundary points, Comm. Partial Differential Equations8 (1983), 773–817. Zbl0515.35024MR700735
- [42] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations51 (1984), 126–150. Zbl0488.35017MR727034
- [43] J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim.12 (1984), 191–202. Zbl0561.35003MR768629
- [44] S. Yijing, W. Shaoping and L. Yiming, Combined effects of singular and superlinear nonlinearities in some singular boundary value problems, J. Differential Equations176 (2001), 511–531. Zbl1109.35344MR1866285
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.