Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation

Jacques Giacomoni; Ian Schindler; Peter Takáč

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)

  • Volume: 6, Issue: 1, page 117-158
  • ISSN: 0391-173X

Abstract

top
We investigate the following quasilinear and singular problem, t o 2 . 7 c m - Δ p u = λ u δ + u q in Ω ; u | Ω = 0 , u > 0 in Ω , t o 2 . 7 c m (P) where Ω is an open bounded domain with smooth boundary, 1 < p < , p - 1 < q p * - 1 , λ > 0 , and 0 < δ < 1 . As usual, p * = N p N - p if 1 < p < N , p * ( p , ) is arbitrarily large if p = N , and p * = if p > N . We employ variational methods in order to show the existence of at least two distinct (positive) solutions of problem (P) in W 0 1 , p ( Ω ) . While following an approach due to Ambrosetti-Brezis-Cerami, we need to prove two new results of separate interest: a strong comparison principle and a regularity result for solutions to problem (P) in C 1 , β ( Ω ¯ ) with some β ( 0 , 1 ) . Furthermore, we show that δ < 1 is a reasonable sufficient (and likely optimal) condition to obtain solutions of problem (P) in C 1 ( Ω ¯ ) .

How to cite

top

Giacomoni, Jacques, Schindler, Ian, and Takáč, Peter. "Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.1 (2007): 117-158. <http://eudml.org/doc/272290>.

@article{Giacomoni2007,
abstract = {We investigate the following quasilinear and singular problem,\[ \hbox\{t\}o 2.7cm\{\}\left\lbrace \begin\{array\}\{ll\} - \Delta \_p u = \frac\{\lambda \}\{u^\delta \} + u^q \quad & \mbox\{ in \}\,\Omega ;\\ u\vert \_\{\partial \Omega \} = 0 ,\quad u &gt; 0\quad & \mbox\{ in \}\,\Omega , \end\{array\} \right.\hbox\{t\}o 2.7cm\{\}\hbox\{ \{\rm (P)\}\} \]where $\Omega $ is an open bounded domain with smooth boundary, $1 &lt; p &lt; \infty $, $p-1 &lt; q\le p^\{*\} - 1$, $\lambda &gt; 0$, and $0 &lt; \delta &lt; 1$. As usual, $p^\{*\} = \frac\{Np\}\{N-p\}$ if $1 &lt; p &lt; N$, $p^\{*\}\in (p,\infty )$ is arbitrarily large if $p = N$, and $p^\{*\} = \infty $ if $p &gt; N$. We employ variational methods in order to show the existence of at least two distinct (positive) solutions of problem (P) in $W_0^\{1,p\}(\Omega )$. While following an approach due to Ambrosetti-Brezis-Cerami, we need to prove two new results of separate interest: a strong comparison principle and a regularity result for solutions to problem (P) in $C^\{1,\beta \}(\overline\{\Omega \})$ with some $\beta \in (0,1)$. Furthermore, we show that $\delta &lt; 1$ is a reasonable sufficient (and likely optimal) condition to obtain solutions of problem (P) in $C^1(\overline\{\Omega \})$.},
author = {Giacomoni, Jacques, Schindler, Ian, Takáč, Peter},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {quasilinear equation; singular equation; positive solutions; multiplicity; regularity; comparison principle; local minimizer; saddle point},
language = {eng},
number = {1},
pages = {117-158},
publisher = {Scuola Normale Superiore, Pisa},
title = {Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation},
url = {http://eudml.org/doc/272290},
volume = {6},
year = {2007},
}

TY - JOUR
AU - Giacomoni, Jacques
AU - Schindler, Ian
AU - Takáč, Peter
TI - Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 1
SP - 117
EP - 158
AB - We investigate the following quasilinear and singular problem,\[ \hbox{t}o 2.7cm{}\left\lbrace \begin{array}{ll} - \Delta _p u = \frac{\lambda }{u^\delta } + u^q \quad & \mbox{ in }\,\Omega ;\\ u\vert _{\partial \Omega } = 0 ,\quad u &gt; 0\quad & \mbox{ in }\,\Omega , \end{array} \right.\hbox{t}o 2.7cm{}\hbox{ {\rm (P)}} \]where $\Omega $ is an open bounded domain with smooth boundary, $1 &lt; p &lt; \infty $, $p-1 &lt; q\le p^{*} - 1$, $\lambda &gt; 0$, and $0 &lt; \delta &lt; 1$. As usual, $p^{*} = \frac{Np}{N-p}$ if $1 &lt; p &lt; N$, $p^{*}\in (p,\infty )$ is arbitrarily large if $p = N$, and $p^{*} = \infty $ if $p &gt; N$. We employ variational methods in order to show the existence of at least two distinct (positive) solutions of problem (P) in $W_0^{1,p}(\Omega )$. While following an approach due to Ambrosetti-Brezis-Cerami, we need to prove two new results of separate interest: a strong comparison principle and a regularity result for solutions to problem (P) in $C^{1,\beta }(\overline{\Omega })$ with some $\beta \in (0,1)$. Furthermore, we show that $\delta &lt; 1$ is a reasonable sufficient (and likely optimal) condition to obtain solutions of problem (P) in $C^1(\overline{\Omega })$.
LA - eng
KW - quasilinear equation; singular equation; positive solutions; multiplicity; regularity; comparison principle; local minimizer; saddle point
UR - http://eudml.org/doc/272290
ER -

References

top
  1. [1] Adimurthi and J. Giacomoni, Multiplicity of positive solutions for a singular and critical elliptic problem in 2 , Commun. Contemp. Math. 8 (2006), 621–656. Zbl1202.35087MR2263949
  2. [2] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convexe nonlinearities in some elliptic problems, J. Funct. Anal.122 (1994), 519–543. Zbl0805.35028MR1276168
  3. [3] A. Ambrosetti, J. P. García Azorero and I. Peral Alonso, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal.137 (1996), 219–242. Zbl0852.35045MR1383017
  4. [4] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973), 349–381. Zbl0273.49063MR370183
  5. [5] A. Anane, Simplicité et isolation de la première valeur propre du p -laplacien avec poids, C.R. Acad. Sci. Paris, Sér. I-Math. 305 (1987), 725–728. Zbl0633.35061MR920052
  6. [6] A. Anane, “Etude des valeurs propres et de la résonance pour l’opérateur p -Laplacien", Thèse de doctorat, Université Libre de Bruxelles, 1988, Brussels. 
  7. [7] C. Aranda and T. Godoy, Existence and multiplicity of positive solutions for a singular problem associated to the p -Laplacian operator, Electron. J. Differential Equations132 (2004), 1–15. Zbl1129.35365MR2108903
  8. [8] F. V. Atkinson and L. A. Peletier, Emden-Fowler equations involving critical exponents, Nonlinear Anal.10 (1986), 755–776. Zbl0662.34024MR851145
  9. [9] L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal.19 (1992), 581–597. Zbl0783.35020MR1183665
  10. [10] H. Brezis and E. Lieb, A relation between point convergence of functions and convergence of functionals, Proc. Amer. Math. Soc.88 (1983), 486–490. Zbl0526.46037MR699419
  11. [11] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equation involving the critical Sobolev exponent, Comm. Pure Appl. Math.36 (1983), 437–477. Zbl0541.35029MR709644
  12. [12] H. Brezis and L. Nirenberg, Minima locaux relatifs à C 1 et H 1 , C.R. Acad. Sci. Paris, Sér. I-Math. 317 (1993), 465–472. Zbl0803.35029
  13. [13] M. M. Coclite and G. Palmieri, On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations14 (1989), 1315–1327. Zbl0692.35047MR1022988
  14. [14] M. Cuesta and P. Takáč, A strong comparison principle for positive solutions of degenerate elliptic equations, Differential Integral Equations13 (2000), 721–746. Zbl0973.35077MR1750048
  15. [15] M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations2 (1977), 193–222. Zbl0362.35031MR427826
  16. [16] K. Deimling, “Nonlinear Functional Analysis”, Springer–Verlag, Berlin–Heidelberg–New York, 1985. Zbl0559.47040MR787404
  17. [17] J. I. Díaz and J. E. Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C.R. Acad. Sci. Paris, Sér. I-Math. 305 (1987), 521–524. Zbl0656.35039MR916325
  18. [18] J. I. Díaz, J. M. Morel and L. Oswald, An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations12 (1987), 1333–1344. Zbl0634.35031MR912208
  19. [19] E. DiBenedetto, C 1 + α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal.7 (1983), 827–850. Zbl0539.35027MR709038
  20. [20] J. P. García Azorero and I. Peral Alonso, Some results about the existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math. J.43 (1994), 941–957. Zbl0822.35048MR1305954
  21. [21] J. P. García Azorero, I. Peral Alonso and J. J. Manfredi, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math.2 (2000), 385–404. Zbl0965.35067MR1776988
  22. [22] J. Giacomoni and K. Sreenadh, Multiplicity results for a singular and quasilinear equation, submitted for publication. Zbl1163.35356
  23. [23] M. Giaquinta, “Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems”, Annals of Mathematics Studies, Princeton University Press, Princeton, N.J., 1983. Zbl0516.49003MR717034
  24. [24] M. Giaquinta and E. Giusti, Global C 1 + α -regularity for second order quasilinear elliptic equations in divergence form, J. Reine Angew. Math.351 (1984), 55–65. Zbl0528.35014MR749677
  25. [25] N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire6 (1989), 321–330. Zbl0711.58008MR1030853
  26. [26] N. Ghoussoub and C. Yuan, Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy Exponents, Trans. Amer. Math. Soc.352 (2000), 5703–5743. Zbl0956.35056MR1695021
  27. [27] M. Guedda and L. Véron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal.13 (1989), 879–902. Zbl0714.35032MR1009077
  28. [28] D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order”, Springer-Verlag, New-York, 1983. Zbl0361.35003MR737190
  29. [29] Y. Haitao, Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem, J. Differential Equations189 (2003), 487–512. Zbl1034.35038MR1964476
  30. [30] J. Hernández, F. Mancebo and J. M. Vega, On the linearization of some singular, nonlinear elliptic problems and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002), 777–813. Zbl1020.35065MR1939086
  31. [31] N. Hirano, C. Saccon and N. Shioji, Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities, Adv. Differential Equations9 (2004), 197–220. Zbl05054519MR2099611
  32. [32] A. C. Lazer and P. J. Mckenna, On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc.111 (1991), 721–730. Zbl0727.35057MR1037213
  33. [33] G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal.12 (1988), 1203–1219. Zbl0675.35042MR969499
  34. [34] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J.20 (1971), 1077–1092. Zbl0213.13001MR301504
  35. [35] Z. Nehari, On a class of nonlinear second order differential equations, Trans. Amer. Math. Soc.95 (1960), 101–123. Zbl0097.29501MR111898
  36. [36] R. R. Phelps, “Convex Functions, Monotone Operators, and Differentiability”, Lecture notes in Mathematics, Vol. 1364, Springer-Verlag, Berlin, 1993. Zbl0921.46039MR1238715
  37. [37] S. Prashanth and K. Sreenadh, Multiplicity Results in a ball for p - Laplace equation in a ball with positive nonlinearity, Adv. Differential Equations7 (2002), 877–896. Zbl1033.35039MR1895169
  38. [38] I. Schindler, Quasilinear elliptic boundary-value problems on unbounded cylinders and a related mountain-pass lemma, Arch. Rational Mech. Anal.120 (1992), 363–374. Zbl0784.35029MR1185567
  39. [39] J. B. Serrin, Local behavior of solutions of quasilinear elliptic equations, Acta Math.111 (1964), 247–302. Zbl0128.09101MR170096
  40. [40] P. Takáč, On the Fredholm alternative for the p -Laplacian at the first eigenvalue, Indiana Univ. Math. J.51 (2002), 187–237. Zbl1035.35046MR1896161
  41. [41] P. Tolksdorf, On the Dirichlet problem for quasilinear equations in domans with conical boundary points, Comm. Partial Differential Equations8 (1983), 773–817. Zbl0515.35024MR700735
  42. [42] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations51 (1984), 126–150. Zbl0488.35017MR727034
  43. [43] J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim.12 (1984), 191–202. Zbl0561.35003MR768629
  44. [44] S. Yijing, W. Shaoping and L. Yiming, Combined effects of singular and superlinear nonlinearities in some singular boundary value problems, J. Differential Equations176 (2001), 511–531. Zbl1109.35344MR1866285

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.