Diophantine equations with linear recurrences An overview of some recent progress

Umberto Zannier[1]

  • [1] Scuola Normale Superiore Piazza dei Cavalieri, 7 56126 Pisa, ITALY

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 1, page 423-435
  • ISSN: 1246-7405

Abstract

top
We shall discuss some known problems concerning the arithmetic of linear recurrent sequences. After recalling briefly some longstanding questions and solutions concerning zeros, we shall focus on recent progress on the so-called “quotient problem” (resp. " d -th root problem"), which in short asks whether the integrality of the values of the quotient (resp. d -th root) of two (resp. one) linear recurrences implies that this quotient (resp. d -th root) is itself a recurrence. We shall also relate such questions with certain natural diophantine equations, which in turn come from the simplest unknown cases of Vojta’s conjecture for integral points on algebraic varieties.

How to cite

top

Zannier, Umberto. "Diophantine equations with linear recurrences An overview of some recent progress." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 423-435. <http://eudml.org/doc/249473>.

@article{Zannier2005,
abstract = {We shall discuss some known problems concerning the arithmetic of linear recurrent sequences. After recalling briefly some longstanding questions and solutions concerning zeros, we shall focus on recent progress on the so-called “quotient problem” (resp. "$d$-th root problem"), which in short asks whether the integrality of the values of the quotient (resp. $d$-th root) of two (resp. one) linear recurrences implies that this quotient (resp. $d$-th root) is itself a recurrence. We shall also relate such questions with certain natural diophantine equations, which in turn come from the simplest unknown cases of Vojta’s conjecture for integral points on algebraic varieties.},
affiliation = {Scuola Normale Superiore Piazza dei Cavalieri, 7 56126 Pisa, ITALY},
author = {Zannier, Umberto},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {423-435},
publisher = {Université Bordeaux 1},
title = {Diophantine equations with linear recurrences An overview of some recent progress},
url = {http://eudml.org/doc/249473},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Zannier, Umberto
TI - Diophantine equations with linear recurrences An overview of some recent progress
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 423
EP - 435
AB - We shall discuss some known problems concerning the arithmetic of linear recurrent sequences. After recalling briefly some longstanding questions and solutions concerning zeros, we shall focus on recent progress on the so-called “quotient problem” (resp. "$d$-th root problem"), which in short asks whether the integrality of the values of the quotient (resp. $d$-th root) of two (resp. one) linear recurrences implies that this quotient (resp. $d$-th root) is itself a recurrence. We shall also relate such questions with certain natural diophantine equations, which in turn come from the simplest unknown cases of Vojta’s conjecture for integral points on algebraic varieties.
LA - eng
UR - http://eudml.org/doc/249473
ER -

References

top
  1. Y. Bugeaud, P. Corvaja, U. Zannier, An upper bound for the G.C.D. of a n - 1 and b n - 1 . Math. Z. 243 (2003), 79–84. Zbl1021.11001MR1953049
  2. P. Corvaja, U. Zannier, Diophantine equations with power sums and Universal Hilbert Sets. Indag. Mathem., N.S. 9 (3) (1998), 317–332. Zbl0923.11103MR1692189
  3. P. Corvaja, U. Zannier, Finiteness of integral values for the ratio of two linear recurrences. Invent. Math. 149 (2002), 431–451. Zbl1026.11021MR1918678
  4. P. Corvaja, U. Zannier, On the greatest prime factor of ( a b + 1 ) ( a c + 1 ) . Proc. Amer. Math. Soc. 131 (2003), 1705–1709. Zbl1077.11052MR1955256
  5. P. Corvaja, U. Zannier, On the length of the continued fraction for values of quotients of power sums. Preprint 2003, to appear on Journal de Théorie des nombres de Bordeaux. Zbl1159.11021MR2212122
  6. P. Corvaja, U. Zannier, Some New Applications of the Subspace Theorem, Compositio Math. 131 (2002), 319–340. Zbl1010.11038MR1905026
  7. P. Corvaja, U. Zannier, On the diophantine equation f ( a m , y ) = b n . Acta Arith. 94.1 (2000), 25–40. Zbl0963.11020MR1762454
  8. P. Dèbes, U. Zannier, Universal Hilbert Subsets. Math. Proc. Camb. Phil. Soc. 124 (1998), 127–134. Zbl0910.12002MR1620544
  9. M. Hindry, J.H. Silverman, Diophantine Geometry. Springer-Verlag, 2000. Zbl0948.11023MR1745599
  10. A. Perelli, U. Zannier, Arithmetic properties of certain recurrent sequences. J. Austral. Math. Soc. (A) 37 (1984), 4–16. Zbl0543.10008MR742240
  11. A.J. van der Poorten, Some facts that should be better known, especially about rational functions. In Number Theory and Applications, (Banff, AB 1988), 497–528, Kluwer Acad. Publ., Dordrecht, 1989. Zbl0687.10007MR1123092
  12. A.J. van der Poorten, Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles. C. R. Acad. Sci. Paris 306 (1988), 97–102. Zbl0635.10007MR929097
  13. Y. Pourchet, Solution du problème arithmétique du quotient de Hadamard de deux fractions rationnelles. C. R. Acad. Sci. Paris 288, Série A (1979), 1055–1057. Zbl0421.13005MR541979
  14. R. Rumely, Note on van der Poorten’s proof of the Hadamard quotient theorem I, II. In: Séminaire de Théorie des nombres de Paris 1986-87, 349–409, Progress in Math. 75, Birkhäuser, Boston, 1988. Zbl0661.10017MR990517
  15. W.M. Schmidt, The zero multiplicity of linear recurrence sequences. Acta Math. 182 (1999), 243–282. Zbl0974.11013MR1710183
  16. W.M. Schmidt, Linear Recurrence Sequences and Polynomial-Exponential Equations. In Diophantine Approximation, F. Amoroso, U. Zannier Eds., Proc. of the C.I.M.E. Conference, Cetraro (Italy), 2000, Springer-Verlag LNM 1819, 2003. Zbl1034.11011MR2009831
  17. T.N. Shorey, C.L. Stewart, Pure Powers in Recurrence Sequences and Some Related Diophantine Equations. Journal of Number Theory 27 (1987), 324–352. Zbl0624.10009MR915504
  18. T.N. Shorey, R. Tijdeman, Exponential Diophantine Equations. Camb. Univ. Press, 1986. Zbl0606.10011MR891406
  19. U. Zannier, Some applications of Diophantine Approximation to Diophantine Equations. Editrice Forum, Udine, Dicembre 2003. 
  20. U. Zannier, A proof of Pisot d t h root conjecture. Annals of Math. 151 (2000), 375–383. Zbl0995.11007MR1745008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.