Slopes of powers of Frobenius on crystalline cohomology

Niels O. Nygaard

Annales scientifiques de l'École Normale Supérieure (1981)

  • Volume: 14, Issue: 4, page 369-401
  • ISSN: 0012-9593

How to cite

top

Nygaard, Niels O.. "Slopes of powers of Frobenius on crystalline cohomology." Annales scientifiques de l'École Normale Supérieure 14.4 (1981): 369-401. <http://eudml.org/doc/82080>.

@article{Nygaard1981,
author = {Nygaard, Niels O.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Katz conjecture; geometric Hodge polygon; Newton polygon; algebraic Hodge polygon; formal Brauer group; crystalline cohomology; geometric Hodge number},
language = {eng},
number = {4},
pages = {369-401},
publisher = {Elsevier},
title = {Slopes of powers of Frobenius on crystalline cohomology},
url = {http://eudml.org/doc/82080},
volume = {14},
year = {1981},
}

TY - JOUR
AU - Nygaard, Niels O.
TI - Slopes of powers of Frobenius on crystalline cohomology
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1981
PB - Elsevier
VL - 14
IS - 4
SP - 369
EP - 401
LA - eng
KW - Katz conjecture; geometric Hodge polygon; Newton polygon; algebraic Hodge polygon; formal Brauer group; crystalline cohomology; geometric Hodge number
UR - http://eudml.org/doc/82080
ER -

References

top
  1. [1] M. ARTIN, Supersingular K3 Surfaces (Ann. scient. Éc. Norm. Sup., 4e Serie, T. 7, 1974, pp. 543-568). Zbl0322.14014MR51 #8116
  2. [2] P. BERTHELOT, Cohomologie cristalline des schémas de caracteristique p &gt; 0 (Lecture Notes in Mathematics, No. 407, Springer Verlag, Berlin, Heidelberg, New York, 1974). Zbl0298.14012MR52 #5676
  3. [3] P. BERTHELOT and A. OGUS, Notes on Crystalline Cohomology (Mathematical Notes, Vol. 21, Princeton University Press, 1978). Zbl0383.14010MR58 #10908
  4. [4] L. ILLUSIE, Complexe de De Rham-Witt [Journées de Géométrie algébrique de Rennes, July 1978 (Astérisque, 64)]. 
  5. [5] L. ILLUSIE, Complexe de De Rham-Witt et cohomologie cristalline (Ann. scient. Éc. Norm. Sup., 4e Série, T. 12, 1979, pp. 501-661). Zbl0436.14007MR82d:14013
  6. [6] N. KATZ, Slope Filtration of F-crystals [Journées de Géométrie algébrique de Rennes, July 1978 (Astérisque, 64)]. Zbl0426.14007
  7. [7] B. MAZUR, Frobenius and the Hodge Filtration (Bull. A.M.S., Vol. 78, 1972, pp. 653-667). Zbl0258.14006MR48 #8507
  8. [8] B. MAZUR, Frobenius and the Hodge Filtration, Estimates (Ann. Math., Vol. 98, 1973, pp. 58-95). Zbl0261.14005MR48 #297
  9. [9] N. NYGAARD, A p-adic Proof of the Non-Existence of Vectorfields on K3 Surfaces (Ann. Math., Vol. 110, 1979, pp. 515-528). Zbl0448.14008MR80m:14024
  10. [10] N. NYGAARD, Higher de Rham-Witt Complexes of Supersingular K3 Surfaces (to appear in Comp. Math.). Zbl0482.14009
  11. [11] A. OGUS, Supersingular K3 Crystals [Journées de Géométrie, algébrique de Rennes, July 1978 (Astérisque, 64)]. Zbl0435.14003MR81e:14024
  12. [12] J.-P. SERRE, Sur la topologie des variétés algébriques, en caractéristique p (Symp. Int. de Top. Alg. Mexico, 1958, pp. 24-53). Zbl0098.13103MR20 #4559
  13. [13] N. YUI, On the Jacobian Varieties of Hyperelliptic Curves Over fields of Characteristic p &gt; 2 (J. Alg., Vol. 52, 1978, pp. 378-410). Zbl0404.14008MR58 #10920

Citations in EuDML Documents

top
  1. Yuri G. Zarhin, Non-supersingular hyperelliptic jacobians
  2. Luc Illusie, Michel Raynaud, Les suites spectrales associées au complexe de de Rham-Witt
  3. Tomoyoshi Ibukiyama, Toshiyuki Katsura, Frans Oort, Supersingular curves of genus two and class numbers
  4. Douglas L. Ulmer, On the Fourier coefficients of modular forms
  5. Nicholas M. Katz, Internal reconstruction of unit-root F -crystals via expansion-coefficients. With an appendix by Luc Illusie
  6. Michel Gros, Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.