Displaying similar documents to “Profile decomposition for solutions of the Navier-Stokes equations”

Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production

Lu Yang, Xi Liu, Zhibo Hou (2023)

Czechoslovak Mathematical Journal

Similarity:

We consider the Keller-Segel-Navier-Stokes system n t + 𝐮 · n = Δ n - · ( n v ) , x Ω , t > 0 , v t + 𝐮 · v = Δ v - v + w , x Ω , t > 0 , w t + 𝐮 · w = Δ w - w + n , x Ω , t > 0 , 𝐮 t + ( 𝐮 · ) 𝐮 = Δ 𝐮 + P + n φ , · 𝐮 = 0 , x Ω , t > 0 , which is considered in bounded domain Ω N ( N { 2 , 3 } ) with smooth boundary, where φ C 1 + δ ( Ω ¯ ) with δ ( 0 , 1 ) . We show that if the initial data n 0 L N / 2 ( Ω ) , v 0 L N ( Ω ) , w 0 L N ( Ω ) and 𝐮 0 L N ( Ω ) is small enough, an associated initial-boundary value problem possesses a global classical solution which decays to the constant state ( n ¯ 0 , n ¯ 0 , n ¯ 0 , 0 ) exponentially with n ¯ 0 : = ( 1 / | Ω | ) Ω n 0 ( x ) d x .

On the existence of steady-state solutions to the Navier-Stokes system for large fluxes

Antonio Russo, Giulio Starita (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

In this paper we deal with the stationary Navier-Stokes problem in a domain Ω with compact Lipschitz boundary Ω and datum a in Lebesgue spaces. We prove existence of a solution for arbitrary values of the fluxes through the connected components of Ω , with possible countable exceptional set, provided a is the sum of the gradient of a harmonic function and a sufficiently small field, with zero total flux for Ω bounded.

A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three

Huanyuan Li (2021)

Applications of Mathematics

Similarity:

This paper proves a Serrin’s type blow-up criterion for the 3D density-dependent Navier-Stokes-Korteweg equations with vacuum. It is shown that if the density ρ and velocity field u satisfy ρ L ( 0 , T ; W 1 , q ) + u L s ( 0 , T ; L ω r ) < for some q > 3 and any ( r , s ) satisfying 2 / s + 3 / r 1 , 3 < r , then the strong solutions to the density-dependent Navier-Stokes-Korteweg equations can exist globally over [ 0 , T ] . Here L ω r denotes the weak L r space.

Coincidence for substitutions of Pisot type

Marcy Barge, Beverly Diamond (2002)

Bulletin de la Société Mathématique de France

Similarity:

Let ϕ be a substitution of Pisot type on the alphabet 𝒜 = { 1 , 2 , ... , d } ; ϕ satisfies theif for every i , j 𝒜 , there are integers k , n such that ϕ n ( i ) and ϕ n ( j ) have the same k -th letter, and the prefixes of length k - 1 of ϕ n ( i ) and ϕ n ( j ) have the same image under the abelianization map. We prove that the strong coincidence condition is satisfied if d = 2 and provide a partial result for d 2 .

Involutivity degree of a distribution at superdensity points of its tangencies

Silvano Delladio (2021)

Archivum Mathematicum

Similarity:

Let Φ 1 , ... , Φ k + 1 (with k 1 ) be vector fields of class C k in an open set U N + m , let 𝕄 be a N -dimensional C k submanifold of U and define 𝕋 : = { z 𝕄 : Φ 1 ( z ) , ... , Φ k + 1 ( z ) T z 𝕄 } where T z 𝕄 is the tangent space to 𝕄 at z . Then we expect the following property, which is obvious in the special case when z 0 is an interior point (relative to 𝕄 ) of 𝕋 : If z 0 𝕄 is a ( N + k ) -density point (relative to 𝕄 ) of 𝕋 then all the iterated Lie brackets of order less or equal to k Φ i 1 ( z 0 ) , [ Φ i 1 , Φ i 2 ] ( z 0 ) , [ [ Φ i 1 , Φ i 2 ] , Φ i 3 ] ( z 0 ) , ... ( h , i h k + 1 ) belong to T z 0 𝕄 . Such a property has been proved in [9] for k = 1 and its proof in the...

The Rothberger property on C p ( Ψ ( 𝒜 ) , 2 )

Daniel Bernal-Santos (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is said to have the Rothberger property (or simply X is Rothberger) if for every sequence 𝒰 n : n ω of open covers of X , there exists U n 𝒰 n for each n ω such that X = n ω U n . For any n ω , necessary and sufficient conditions are obtained for C p ( Ψ ( 𝒜 ) , 2 ) n to have the Rothberger property when 𝒜 is a Mrówka mad family and, assuming CH (the Continuum Hypothesis), we prove the existence of a maximal almost disjoint family 𝒜 for which the space C p ( Ψ ( 𝒜 ) , 2 ) n is Rothberger for all n ω .

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...