On the structure of triangulated categories with finitely many indecomposables
Bulletin de la Société Mathématique de France (2007)
- Volume: 135, Issue: 3, page 435-474
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topAmiot, Claire. "On the structure of triangulated categories with finitely many indecomposables." Bulletin de la Société Mathématique de France 135.3 (2007): 435-474. <http://eudml.org/doc/272357>.
@article{Amiot2007,
abstract = {We study the problem of classifying triangulated categories with finite-dimensional morphism spaces and finitely many indecomposables over an algebraically closed field $k$. We obtain a new proof of the following result due to Xiao and Zhu: the Auslander-Reiten quiver of such a category $\mathcal \{T\}$ is of the form $\mathbb \{Z\}\Delta /G$ where $\Delta $ is a disjoint union of simply-laced Dynkin diagrams and $G$ a weakly admissible group of automorphisms of $\mathbb \{Z\}\Delta $. Then we prove that for ‘most’ groups $G$, the category $\mathcal \{T\}$ is standard,i.e.$k$-linearly equivalent to an orbit category $\mathcal \{D\}^b(~mod \;k\Delta )/\Phi $. This happens in particular when $\mathcal \{T\}$ is maximal $d$-Calabi-Yau with $d\ge 2$. Moreover, if $\mathcal \{T\}$ is standard and algebraic, we can even construct a triangle equivalence between $\mathcal \{T\}$ and the corresponding orbit category. Finally we give a sufficient condition for the category of projectives of a Frobenius category to be triangulated. This allows us to construct non standard $1$-Calabi-Yau categories using deformed preprojective algebras of generalized Dynkin type.},
author = {Amiot, Claire},
journal = {Bulletin de la Société Mathématique de France},
keywords = {locally finite triangulated category; Calabi-Yau category; Dynkin diagram; Auslander-Reiten quiver; orbit category},
language = {eng},
number = {3},
pages = {435-474},
publisher = {Société mathématique de France},
title = {On the structure of triangulated categories with finitely many indecomposables},
url = {http://eudml.org/doc/272357},
volume = {135},
year = {2007},
}
TY - JOUR
AU - Amiot, Claire
TI - On the structure of triangulated categories with finitely many indecomposables
JO - Bulletin de la Société Mathématique de France
PY - 2007
PB - Société mathématique de France
VL - 135
IS - 3
SP - 435
EP - 474
AB - We study the problem of classifying triangulated categories with finite-dimensional morphism spaces and finitely many indecomposables over an algebraically closed field $k$. We obtain a new proof of the following result due to Xiao and Zhu: the Auslander-Reiten quiver of such a category $\mathcal {T}$ is of the form $\mathbb {Z}\Delta /G$ where $\Delta $ is a disjoint union of simply-laced Dynkin diagrams and $G$ a weakly admissible group of automorphisms of $\mathbb {Z}\Delta $. Then we prove that for ‘most’ groups $G$, the category $\mathcal {T}$ is standard,i.e.$k$-linearly equivalent to an orbit category $\mathcal {D}^b(~mod \;k\Delta )/\Phi $. This happens in particular when $\mathcal {T}$ is maximal $d$-Calabi-Yau with $d\ge 2$. Moreover, if $\mathcal {T}$ is standard and algebraic, we can even construct a triangle equivalence between $\mathcal {T}$ and the corresponding orbit category. Finally we give a sufficient condition for the category of projectives of a Frobenius category to be triangulated. This allows us to construct non standard $1$-Calabi-Yau categories using deformed preprojective algebras of generalized Dynkin type.
LA - eng
KW - locally finite triangulated category; Calabi-Yau category; Dynkin diagram; Auslander-Reiten quiver; orbit category
UR - http://eudml.org/doc/272357
ER -
References
top- [1] H. Asashiba – « The derived equivalence classification of representation-finite selfinjective algebras », J. Algebra214 (1999), p. 182–221. Zbl0949.16013MR1684880
- [2] M. Auslander – « Functors and morphisms determined by objects », in Representation theory of algebras (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976), Lecture Notes in Pure Appl. Math., vol. 37, Dekker, 1978, p. 1–244. Lecture Notes in Pure Appl. Math., Vol. 37. Zbl0383.16015MR480688
- [3] —, « Isolated singularities and existence of almost split sequences », in Representation theory, II (Ottawa, Ont., 1984), Lecture Notes in Math., vol. 1178, Springer, 1986, p. 194–242. Zbl0633.13007MR842486
- [4] M. Auslander & I. Reiten – « McKay quivers and extended Dynkin diagrams », Trans. Amer. Math. Soc.293 (1986), p. 293–301. Zbl0588.20001MR814923
- [5] —, « Cohen-Macaulay and Gorenstein Artin algebras », in Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), Progr. Math., vol. 95, Birkhäuser, 1991, p. 221–245. Zbl0759.16007MR1112162
- [6] R. Bautista, P. Gabriel, A. V. Roĭter & L. Salmerón – « Representation-finite algebras and multiplicative bases », Invent. Math.81 (1985), p. 217–285. Zbl0575.16012MR799266
- [7] A. A. Beĭlinson, J. Bernstein & P. Deligne – « Faisceaux pervers », in Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, 1982, p. 5–171. Zbl0536.14011MR751966
- [8] J. Białkowski, K. Erdmann & A. Skowroński – « Deformed preprojective algebras of generalized Dynkin type », Trans. Amer. Math. Soc.359 (2007), p. 2625–2650. Zbl1117.16005MR2286048
- [9] J. Białkowski & A. Skowroński – « Calabi-Yau stable module categories of finite type », preprint http://www.mat.uni.torun.pl/preprints/, 2006. Zbl1168.16003
- [10] —, « Nonstandard additively finite triangulated categories of Calabi-Yau dimension one in characteristic », to appear in Algebra and Discrete Mathematics. Zbl1164.16006
- [11] A. B. Buan, R. Marsh, M. Reineke, I. Reiten & G. Todorov – « Tilting theory and cluster combinatorics », Adv. Math.204 (2006), p. 572–618. Zbl1127.16011MR2249625
- [12] P. Caldero, F. Chapoton & R. Schiffler – « Quivers with relations arising from clusters ( case) », Trans. Amer. Math. Soc.358 (2006), p. 1347–1364. Zbl1137.16020MR2187656
- [13] P. Caldero & B. Keller – « From triangulated categories to cluster algebras », preprint arXiv:math.RT/0506018, 2005. Zbl1141.18012MR2385670
- [14] E. Dieterich – « The Auslander-Reiten quiver of an isolated singularity », in Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), Lecture Notes in Math., vol. 1273, Springer, 1987, p. 244–264. Zbl0632.14004MR915179
- [15] K. Erdmann & N. Snashall – « On Hochschild cohomology of preprojective algebras. I, II », J. Algebra 205 (1998), p. 391–412, 413–434. Zbl0937.16013MR1632808
- [16] —, « Preprojective algebras of Dynkin type, periodicity and the second Hochschild cohomology », in Algebras and modules, II (Geiranger, 1996), CMS Conf. Proc., vol. 24, Amer. Math. Soc., 1998, p. 183–193. Zbl1034.16501MR1648626
- [17] P. Gabriel & A. V. Roĭter – « Representations of finite-dimensional algebras », in Algebra, VIII, Encyclopaedia Math. Sci., vol. 73, Springer, 1992, With a chapter by B. Keller, p. 1–177. Zbl0839.16001MR1239447
- [18] C. Geiß, B. Leclerc & J. Schröer – « Auslander algebras and initial seeds for cluster algebras », preprint arXiv:math.RT/0506405, 2005. Zbl1135.17007MR2352732
- [19] —, « Partial flag varieties and preprojective algebras », arXiv:math.RT/0609138, 2006.
- [20] C. Geiß, B. Leclerc & J. Schröer – « Rigid modules over preprojective algebras », Invent. Math.165 (2006), p. 589–632. Zbl1167.16009MR2242628
- [21] D. Happel – « On the derived category of a finite-dimensional algebra », Comment. Math. Helv.62 (1987), p. 339–389. Zbl0626.16008MR910167
- [22] —, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, 1988. Zbl0635.16017MR935124
- [23] D. Happel, U. Preiser & C. M. Ringel – « Binary polyhedral groups and Euclidean diagrams », Manuscripta Math.31 (1980), p. 317–329. Zbl0436.20005MR576503
- [24] —, « Vinberg’s characterization of Dynkin diagrams using subadditive functions with application to -periodic modules », in Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., vol. 832, Springer, 1980, p. 280–294. Zbl0446.16032MR607159
- [25] A. Heller – « Stable homotopy categories », Bull. Amer. Math. Soc.74 (1968), p. 28–63. Zbl0177.25605MR224090
- [26] T. Holm & P. Jørgensen – « Cluster categories and selfinjective algebras: type A », preprint arXiv:math.RT/0610728, 2006.
- [27] —, « Cluster categories and selfinjective algebras: type D », preprint arXiv:math.RT/0612451, 2006.
- [28] O. Iyama & Y. Yoshino – « Mutations in triangulated categories and rigid Cohen-Macaulay modules », preprint arXiv:math.RT/0607736, 2006. Zbl1140.18007MR2385669
- [29] B. Keller – « Derived categories and universal problems », Comm. Algebra19 (1991), p. 699–747. Zbl0722.18002MR1102982
- [30] —, « On triangulated orbit categories », Doc. Math.10 (2005), p. 551–581. Zbl1086.18006MR2184464
- [31] —, « On differential graded categories », preprint arXiv:math.KT/0601185, 2006. MR2275593
- [32] B. Keller & I. Reiten – « Cluster-tilted algebras are Gorenstein and stably Calabi-Yau », preprint arXiv:math.RT/0512471, 2005. Zbl1128.18007MR2313531
- [33] —, « Acyclic Calabi-Yau categories », preprint arXiv:math.RT/0610594, 2006.
- [34] B. Keller & D. Vossieck – « Sous les catégories dérivées », C. R. Acad. Sci. Paris Sér. I Math.305 (1987), p. 225–228. Zbl0628.18003MR907948
- [35] R. Marsh, M. Reineke & A. Zelevinsky – « Generalized associahedra via quiver representations », Trans. Amer. Math. Soc.355 (2003), p. 4171–4186. Zbl1042.52007MR1990581
- [36] A. Neeman – Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, 2001. Zbl0974.18008MR1812507
- [37] Y. Palu – « On algebraic Calabi-Yau categories », Thèse, in preparation. Zbl0191.38001
- [38] I. Reiten & M. Van den Bergh – « Noetherian hereditary abelian categories satisfying Serre duality », J. Amer. Math. Soc.15 (2002), p. 295–366. Zbl0991.18009MR1887637
- [39] C. Riedtmann – « Algebren, Darstellungsköcher, Überlagerungen und zurück », Comment. Math. Helv.55 (1980), p. 199–224. Zbl0444.16018MR576602
- [40] —, « Representation-finite self-injective algebras of class », in Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., vol. 832, Springer, 1980, p. 449–520. Zbl0455.16014MR607169
- [41] —, « Many algebras with the same Auslander-Reiten quiver », Bull. London Math. Soc.15 (1983), p. 43–47. Zbl0487.16021MR686347
- [42] —, « Representation-finite self-injective algebras of class », Compositio Math.49 (1983), p. 231–282. MR704393
- [43] C. M. Ringel – Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer, 1984. Zbl0546.16013MR774589
- [44] —, « Hereditary triangulated categories », to appear in Comp. Math., 2006.
- [45] G. Tabuada – « On the structure of Calabi-Yau categories with a cluster tilting subcategory », preprint arXiv:math.RT/0607394, 2006. Zbl1122.18007MR2302527
- [46] J.-L. Verdier – « Catégories dérivées. Quelques résultats », Lect. Notes Math.569 (1977), p. 262–311. Zbl0407.18008
- [47] —, « Des catégories dérivées des catégories abéliennes », Astérisque (1996), p. 253 pp. (1997), With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis. Zbl0882.18010MR1453167
- [48] J. Xiao & B. Zhu – « Relations for the Grothendieck groups of triangulated categories », J. Algebra257 (2002), p. 37–50. Zbl1021.18004MR1942270
- [49] —, « Locally finite triangulated categories », J. Algebra290 (2005), p. 473–490. Zbl1110.16013MR2153264
- [50] Y. Yoshino – Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, 1990. Zbl0745.13003MR1079937
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.