Representation-finite algebras and multiplicative bases.
P. Gabriel; R. Bautista; A.V. Roiter
Inventiones mathematicae (1985)
- Volume: 81, page 217-286
- ISSN: 0020-9910; 1432-1297/e
Access Full Article
topHow to cite
topGabriel, P., Bautista, R., and Roiter, A.V.. "Representation-finite algebras and multiplicative bases.." Inventiones mathematicae 81 (1985): 217-286. <http://eudml.org/doc/143254>.
@article{Gabriel1985,
author = {Gabriel, P., Bautista, R., Roiter, A.V.},
journal = {Inventiones mathematicae},
keywords = {multiplicative basis; indecomposable finite dimensional modules; representation-finite algebras; local primitive orthogonal idempotents; indecomposable projective right ideals; locally representation finite; normalization theorem; normed presentation; Jacobson radical; generators; mild algebra; lattice of ideals; base category; ray-category; algebra cohomology; fundamental group; universal cover},
pages = {217-286},
title = {Representation-finite algebras and multiplicative bases.},
url = {http://eudml.org/doc/143254},
volume = {81},
year = {1985},
}
TY - JOUR
AU - Gabriel, P.
AU - Bautista, R.
AU - Roiter, A.V.
TI - Representation-finite algebras and multiplicative bases.
JO - Inventiones mathematicae
PY - 1985
VL - 81
SP - 217
EP - 286
KW - multiplicative basis; indecomposable finite dimensional modules; representation-finite algebras; local primitive orthogonal idempotents; indecomposable projective right ideals; locally representation finite; normalization theorem; normed presentation; Jacobson radical; generators; mild algebra; lattice of ideals; base category; ray-category; algebra cohomology; fundamental group; universal cover
UR - http://eudml.org/doc/143254
ER -
Citations in EuDML Documents
top- Claire Amiot, On the structure of triangulated categories with finitely many indecomposables
- Christine Riedtmann, Algèbres de type de représentation fini
- Andrzej Skowroński, Tame algebras with strongly simply connected Galois coverings
- Claire Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential
- Zbigniew Leszczyński, Andrzej Skowroński, Tame triangular matrix algebras
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.