# Representation-finite algebras and multiplicative bases.

P. Gabriel; R. Bautista; A.V. Roiter

Inventiones mathematicae (1985)

- Volume: 81, page 217-286
- ISSN: 0020-9910; 1432-1297/e

## Access Full Article

top## How to cite

topGabriel, P., Bautista, R., and Roiter, A.V.. "Representation-finite algebras and multiplicative bases.." Inventiones mathematicae 81 (1985): 217-286. <http://eudml.org/doc/143254>.

@article{Gabriel1985,

author = {Gabriel, P., Bautista, R., Roiter, A.V.},

journal = {Inventiones mathematicae},

keywords = {multiplicative basis; indecomposable finite dimensional modules; representation-finite algebras; local primitive orthogonal idempotents; indecomposable projective right ideals; locally representation finite; normalization theorem; normed presentation; Jacobson radical; generators; mild algebra; lattice of ideals; base category; ray-category; algebra cohomology; fundamental group; universal cover},

pages = {217-286},

title = {Representation-finite algebras and multiplicative bases.},

url = {http://eudml.org/doc/143254},

volume = {81},

year = {1985},

}

TY - JOUR

AU - Gabriel, P.

AU - Bautista, R.

AU - Roiter, A.V.

TI - Representation-finite algebras and multiplicative bases.

JO - Inventiones mathematicae

PY - 1985

VL - 81

SP - 217

EP - 286

KW - multiplicative basis; indecomposable finite dimensional modules; representation-finite algebras; local primitive orthogonal idempotents; indecomposable projective right ideals; locally representation finite; normalization theorem; normed presentation; Jacobson radical; generators; mild algebra; lattice of ideals; base category; ray-category; algebra cohomology; fundamental group; universal cover

UR - http://eudml.org/doc/143254

ER -

## Citations in EuDML Documents

top- Claire Amiot, On the structure of triangulated categories with finitely many indecomposables
- Christine Riedtmann, Algèbres de type de représentation fini
- Andrzej Skowroński, Tame algebras with strongly simply connected Galois coverings
- Claire Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential
- Zbigniew Leszczyński, Andrzej Skowroński, Tame triangular matrix algebras

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.