Weyl formula with optimal remainder estimate of some elastic networks and applications

Kaïs Ammari; Mouez Dimassi

Bulletin de la Société Mathématique de France (2010)

  • Volume: 138, Issue: 3, page 395-413
  • ISSN: 0037-9484

Abstract

top
We consider a network of vibrating elastic strings and Euler-Bernoulli beams. Using a generalized Poisson formula and some Tauberian theorem, we give a Weyl formula with optimal remainder estimate. As a consequence we prove some observability and stabilization results.

How to cite

top

Ammari, Kaïs, and Dimassi, Mouez. "Weyl formula with optimal remainder estimate of some elastic networks and applications." Bulletin de la Société Mathématique de France 138.3 (2010): 395-413. <http://eudml.org/doc/272358>.

@article{Ammari2010,
abstract = {We consider a network of vibrating elastic strings and Euler-Bernoulli beams. Using a generalized Poisson formula and some Tauberian theorem, we give a Weyl formula with optimal remainder estimate. As a consequence we prove some observability and stabilization results.},
author = {Ammari, Kaïs, Dimassi, Mouez},
journal = {Bulletin de la Société Mathématique de France},
keywords = {networks of strings; networks of Euler-Bernoulli beams; tauberian theorem; Weyl formula},
language = {eng},
number = {3},
pages = {395-413},
publisher = {Société mathématique de France},
title = {Weyl formula with optimal remainder estimate of some elastic networks and applications},
url = {http://eudml.org/doc/272358},
volume = {138},
year = {2010},
}

TY - JOUR
AU - Ammari, Kaïs
AU - Dimassi, Mouez
TI - Weyl formula with optimal remainder estimate of some elastic networks and applications
JO - Bulletin de la Société Mathématique de France
PY - 2010
PB - Société mathématique de France
VL - 138
IS - 3
SP - 395
EP - 413
AB - We consider a network of vibrating elastic strings and Euler-Bernoulli beams. Using a generalized Poisson formula and some Tauberian theorem, we give a Weyl formula with optimal remainder estimate. As a consequence we prove some observability and stabilization results.
LA - eng
KW - networks of strings; networks of Euler-Bernoulli beams; tauberian theorem; Weyl formula
UR - http://eudml.org/doc/272358
ER -

References

top
  1. [1] K. Ammari – « Asymptotic behavior of some elastic planar networks of Bernoulli-Euler beams », Appl. Anal.86 (2007), p. 1529–1548. Zbl1145.35340MR2371107
  2. [2] K. Ammari & M. Dimassi – « Weyl formula with second term of some elastic networks », in preparation. 
  3. [3] K. Ammari & M. Jellouli – « Stabilization of star-shaped networks of strings », Differential Integral Equations17 (2004), p. 1395–1410. Zbl1150.93537MR2100033
  4. [4] —, « Remark on stabilization of tree-shaped networks of strings », Appl. Math.52 (2007), p. 327–343. Zbl1164.93315MR2324731
  5. [5] K. Ammari, M. Jellouli & M. Khenissi – « Stabilization of generic trees of strings », J. Dyn. Control Syst.11 (2005), p. 177–193. Zbl1064.93034MR2131807
  6. [6] K. Ammari & M. Tucsnak – « Stabilization of second order evolution equations by a class of unbounded feedbacks », ESAIM Control Optim. Calc. Var.6 (2001), p. 361–386. Zbl0992.93039MR1836048
  7. [7] J. von Below – « Classical solvability of linear parabolic equations on networks », J. Differential Equations72 (1988), p. 316–337. Zbl0674.35039MR932369
  8. [8] J. W. S. Cassels – An introduction to Diophantine approximation, Cambridge Univ. Press, 1966. Zbl0077.04801MR87708
  9. [9] R. Dáger & E. Zuazua – Wave propagation, observation and control in 1 - d flexible multi-structures, Mathématiques & Applications (Berlin), vol. 50, Springer, 2006. Zbl1083.74002MR2169126
  10. [10] B. Dekoninck & S. Nicaise – « The eigenvalue problem for networks of beams », Linear Algebra Appl.314 (2000), p. 165–189. Zbl0979.74026MR1769018
  11. [11] V. Komornik & P. Loreti – Fourier series in control theory, Springer Monographs in Math., Springer, 2005. Zbl1094.49002MR2114325
  12. [12] J. Lagnese, G. Leugerning & E. J. P. G. Schimdt – Modelling, analysis of dynamic elastic multi-link structures, Birkhäuser, 1994. 
  13. [13] S. Lang – Introduction to diophantine approximations, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. Zbl0144.04005MR209227
  14. [14] S. Nicaise – « Spectre des réseaux topologiques finis », Bull. Sci. Math.111 (1987), p. 401–413. Zbl0644.35076MR921561
  15. [15] J.-P. Roth – « Spectre du laplacien sur un graphe », C. R. Acad. Sci. Paris Sér. I Math.296 (1983), p. 793–795. Zbl0557.58023MR711833
  16. [16] —, « Le spectre du laplacien sur un graphe », in Théorie du potentiel (Orsay, 1983), Lecture Notes in Math., vol. 1096, Springer, 1984, p. 521–539. Zbl0557.58023MR890375
  17. [17] K. F. Roth – « Rational approximations to algebraic numbers », Mathematika 2 (1955), p. 1–20; corrigendum, 168. Zbl0064.28501MR72182
  18. [18] E. J. P. G. Schmidt – « On the modelling and exact controllability of networks of vibrating strings », SIAM J. Control Optim.30 (1992), p. 229–245. Zbl0755.35008MR1145715

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.