Weyl formula with optimal remainder estimate of some elastic networks and applications
Bulletin de la Société Mathématique de France (2010)
- Volume: 138, Issue: 3, page 395-413
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topAmmari, Kaïs, and Dimassi, Mouez. "Weyl formula with optimal remainder estimate of some elastic networks and applications." Bulletin de la Société Mathématique de France 138.3 (2010): 395-413. <http://eudml.org/doc/272358>.
@article{Ammari2010,
abstract = {We consider a network of vibrating elastic strings and Euler-Bernoulli beams. Using a generalized Poisson formula and some Tauberian theorem, we give a Weyl formula with optimal remainder estimate. As a consequence we prove some observability and stabilization results.},
author = {Ammari, Kaïs, Dimassi, Mouez},
journal = {Bulletin de la Société Mathématique de France},
keywords = {networks of strings; networks of Euler-Bernoulli beams; tauberian theorem; Weyl formula},
language = {eng},
number = {3},
pages = {395-413},
publisher = {Société mathématique de France},
title = {Weyl formula with optimal remainder estimate of some elastic networks and applications},
url = {http://eudml.org/doc/272358},
volume = {138},
year = {2010},
}
TY - JOUR
AU - Ammari, Kaïs
AU - Dimassi, Mouez
TI - Weyl formula with optimal remainder estimate of some elastic networks and applications
JO - Bulletin de la Société Mathématique de France
PY - 2010
PB - Société mathématique de France
VL - 138
IS - 3
SP - 395
EP - 413
AB - We consider a network of vibrating elastic strings and Euler-Bernoulli beams. Using a generalized Poisson formula and some Tauberian theorem, we give a Weyl formula with optimal remainder estimate. As a consequence we prove some observability and stabilization results.
LA - eng
KW - networks of strings; networks of Euler-Bernoulli beams; tauberian theorem; Weyl formula
UR - http://eudml.org/doc/272358
ER -
References
top- [1] K. Ammari – « Asymptotic behavior of some elastic planar networks of Bernoulli-Euler beams », Appl. Anal.86 (2007), p. 1529–1548. Zbl1145.35340MR2371107
- [2] K. Ammari & M. Dimassi – « Weyl formula with second term of some elastic networks », in preparation.
- [3] K. Ammari & M. Jellouli – « Stabilization of star-shaped networks of strings », Differential Integral Equations17 (2004), p. 1395–1410. Zbl1150.93537MR2100033
- [4] —, « Remark on stabilization of tree-shaped networks of strings », Appl. Math.52 (2007), p. 327–343. Zbl1164.93315MR2324731
- [5] K. Ammari, M. Jellouli & M. Khenissi – « Stabilization of generic trees of strings », J. Dyn. Control Syst.11 (2005), p. 177–193. Zbl1064.93034MR2131807
- [6] K. Ammari & M. Tucsnak – « Stabilization of second order evolution equations by a class of unbounded feedbacks », ESAIM Control Optim. Calc. Var.6 (2001), p. 361–386. Zbl0992.93039MR1836048
- [7] J. von Below – « Classical solvability of linear parabolic equations on networks », J. Differential Equations72 (1988), p. 316–337. Zbl0674.35039MR932369
- [8] J. W. S. Cassels – An introduction to Diophantine approximation, Cambridge Univ. Press, 1966. Zbl0077.04801MR87708
- [9] R. Dáger & E. Zuazua – Wave propagation, observation and control in flexible multi-structures, Mathématiques & Applications (Berlin), vol. 50, Springer, 2006. Zbl1083.74002MR2169126
- [10] B. Dekoninck & S. Nicaise – « The eigenvalue problem for networks of beams », Linear Algebra Appl.314 (2000), p. 165–189. Zbl0979.74026MR1769018
- [11] V. Komornik & P. Loreti – Fourier series in control theory, Springer Monographs in Math., Springer, 2005. Zbl1094.49002MR2114325
- [12] J. Lagnese, G. Leugerning & E. J. P. G. Schimdt – Modelling, analysis of dynamic elastic multi-link structures, Birkhäuser, 1994.
- [13] S. Lang – Introduction to diophantine approximations, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. Zbl0144.04005MR209227
- [14] S. Nicaise – « Spectre des réseaux topologiques finis », Bull. Sci. Math.111 (1987), p. 401–413. Zbl0644.35076MR921561
- [15] J.-P. Roth – « Spectre du laplacien sur un graphe », C. R. Acad. Sci. Paris Sér. I Math.296 (1983), p. 793–795. Zbl0557.58023MR711833
- [16] —, « Le spectre du laplacien sur un graphe », in Théorie du potentiel (Orsay, 1983), Lecture Notes in Math., vol. 1096, Springer, 1984, p. 521–539. Zbl0557.58023MR890375
- [17] K. F. Roth – « Rational approximations to algebraic numbers », Mathematika 2 (1955), p. 1–20; corrigendum, 168. Zbl0064.28501MR72182
- [18] E. J. P. G. Schmidt – « On the modelling and exact controllability of networks of vibrating strings », SIAM J. Control Optim.30 (1992), p. 229–245. Zbl0755.35008MR1145715
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.