On meromorphic functions defined by a differential system of order
Bulletin de la Société Mathématique de France (2004)
- Volume: 132, Issue: 4, page 591-612
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topTorrelli, Tristan. "On meromorphic functions defined by a differential system of order $1$." Bulletin de la Société Mathématique de France 132.4 (2004): 591-612. <http://eudml.org/doc/272371>.
@article{Torrelli2004,
abstract = {Given a germ $h$ of holomorphic function on $(\{\mathbb \{C\}\}^n,0)$, we study the condition: “the ideal $\mbox\{\rm Ann\}_\{\mathcal \{D\}\} 1/h$ is generated by operators of order1”. We obtain here full characterizations in the particular cases of Koszul-free germs and unreduced germs of plane curves. Moreover, we prove that this condition holds for a special type of hyperplane arrangements. These results allow us to link this condition to the comparison of de Rham complexes associated with $h$.},
author = {Torrelli, Tristan},
journal = {Bulletin de la Société Mathématique de France},
keywords = {germs of meromorphic functions; $\mathcal \{D\}$-modules; free divisors; arrangements of hyperplanes; logarithmic de Rham complex; logarithmic comparison theorem},
language = {eng},
number = {4},
pages = {591-612},
publisher = {Société mathématique de France},
title = {On meromorphic functions defined by a differential system of order $1$},
url = {http://eudml.org/doc/272371},
volume = {132},
year = {2004},
}
TY - JOUR
AU - Torrelli, Tristan
TI - On meromorphic functions defined by a differential system of order $1$
JO - Bulletin de la Société Mathématique de France
PY - 2004
PB - Société mathématique de France
VL - 132
IS - 4
SP - 591
EP - 612
AB - Given a germ $h$ of holomorphic function on $({\mathbb {C}}^n,0)$, we study the condition: “the ideal $\mbox{\rm Ann}_{\mathcal {D}} 1/h$ is generated by operators of order1”. We obtain here full characterizations in the particular cases of Koszul-free germs and unreduced germs of plane curves. Moreover, we prove that this condition holds for a special type of hyperplane arrangements. These results allow us to link this condition to the comparison of de Rham complexes associated with $h$.
LA - eng
KW - germs of meromorphic functions; $\mathcal {D}$-modules; free divisors; arrangements of hyperplanes; logarithmic de Rham complex; logarithmic comparison theorem
UR - http://eudml.org/doc/272371
ER -
References
top- [1] M. Artin – « On the solution of analytic equations », Invent. Math.5 (1968), p. 277–291. Zbl0172.05301MR232018
- [2] J. Björk – Analytic -Modules and Applications, Kluwer Academic Publishers, 1993. Zbl0805.32001MR1232191
- [3] F. Calderón-Moreno – « Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor », Ann. Sci. École Norm. Sup.32 (1999), p. 577–595. Zbl0955.14013MR1710757
- [4] F. Calderón-Moreno & L. Narváez-Macarro – « The module for locally quasi-homogeneous free divisors », Compositio Math.134 (2002), p. 59–74. Zbl1017.32023MR1931962
- [5] F. Castro-Jiménez, D. Mond & L. Narváez-Macarro – « Cohomology of the complement of a free divisor », Trans. Amer. Math. Soc.348 (1996), p. 3037–3049. Zbl0862.32021MR1363009
- [6] F. Castro-Jiménez & J. Ucha – « Explicit comparison theorems for -modules, effective methods in rings of differential operators », J. Symb. Comput.32 (2001), p. 677–685. Zbl1015.16029MR1866710
- [7] —, « Free divisors and duality for -modules », 238 (2002), p. 97–105. MR1969307
- [8] V. Ginsburg – « Characteristic varieties and vanishing cycles », Invent. Math.84 (1986), p. 327–402. Zbl0598.32013MR833194
- [9] A. Grothendieck – « On the de Rham cohomology of algebraic varieties », Pub. Math. IHES29 (1966), p. 95–105. Zbl0145.17602MR199194
- [10] M. Holland & D. Mond – « Logarithmic differential forms and the cohomology of the complement of a divisor », Math. Scand.83 (1998), p. 235–254. Zbl0941.32027MR1673922
- [11] M. Kashiwara – « B-functions and holonomic systems », Invent. Math.38 (1976), p. 33–53. Zbl0354.35082MR430304
- [12] B. Malgrange – « Le polynôme de Bernstein d’une singularité isolée », Lecture Notes in Math., vol. 459, Springer-Verlag, 1975, p. 98–119. Zbl0308.32007MR419827
- [13] K. Saito – « Quasihomogene isolierte Singularitäten von Hyperflächen », Invent. Math.14 (1971), p. 123–142. Zbl0224.32011MR294699
- [14] —, « Theory of logarithmic differential forms and logarithmic vector fields », J. Fac. Sci. Univ. Tokyo27 (1980), p. 265–291. Zbl0496.32007MR586450
- [15] —, « On microlocal -function », Bull. Soc. Math. France122 (1994), p. 163–184. Zbl0810.32004MR1273899
- [16] T. Torrelli – « Équations fonctionnelles pour une fonction sur un espace singulier », Thèse, Université de Nice-Sophia Antipolis, 1998.
- [17] —, « Un calcul de polynôme Bernstein associé à un faisceau de coniques non dégénéré », 331 (2000), p. 47–50. Zbl0965.32028MR1780184
- [18] —, « Polynômes de Bernstein associés à une fonction sur une intersection complète à singularité isolée », 52 (2002), p. 221–244. Zbl1015.32009
- [19] —, « Sur les germes de fonctions méromorphes définis par un système différentiel d’ordre », prépublication 45/2002 de l’Institut Élie Cartan de Nancy, 2002.
- [20] A. Varchenko – « Asymptotic Hodge structure in the vanishing cohomology », 18 (1982), p. 469–512. Zbl0489.14003
- [21] U. Walther – « Bernstein-Sato polynomial versus cohomology of the Milnor fiber for generic arrangements », Compositio Math., to appear; arXiv:math.AG/0204080. Zbl1070.32021MR2099772
- [22] J. Wiens & S. Yuzvinsky – « De Rham cohomology of logarithmic forms on arrangements of hyperplanes », Trans. Amer. Math. Soc.349 (1997), p. 1653–1662. Zbl0948.52014MR1407505
- [23] T. Yano – « On the theory of -functions », Publ. RIMS Kyoto Univ.14 (1978), p. 111–202. Zbl0389.32005MR499664
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.