On meromorphic functions defined by a differential system of order 1

Tristan Torrelli

Bulletin de la Société Mathématique de France (2004)

  • Volume: 132, Issue: 4, page 591-612
  • ISSN: 0037-9484

Abstract

top
Given a germ h of holomorphic function on ( n , 0 ) , we study the condition: “the ideal Ann 𝒟 1 / h is generated by operators of order1”. We obtain here full characterizations in the particular cases of Koszul-free germs and unreduced germs of plane curves. Moreover, we prove that this condition holds for a special type of hyperplane arrangements. These results allow us to link this condition to the comparison of de Rham complexes associated with h .

How to cite

top

Torrelli, Tristan. "On meromorphic functions defined by a differential system of order $1$." Bulletin de la Société Mathématique de France 132.4 (2004): 591-612. <http://eudml.org/doc/272371>.

@article{Torrelli2004,
abstract = {Given a germ $h$ of holomorphic function on $(\{\mathbb \{C\}\}^n,0)$, we study the condition: “the ideal $\mbox\{\rm Ann\}_\{\mathcal \{D\}\} 1/h$ is generated by operators of order1”. We obtain here full characterizations in the particular cases of Koszul-free germs and unreduced germs of plane curves. Moreover, we prove that this condition holds for a special type of hyperplane arrangements. These results allow us to link this condition to the comparison of de Rham complexes associated with $h$.},
author = {Torrelli, Tristan},
journal = {Bulletin de la Société Mathématique de France},
keywords = {germs of meromorphic functions; $\mathcal \{D\}$-modules; free divisors; arrangements of hyperplanes; logarithmic de Rham complex; logarithmic comparison theorem},
language = {eng},
number = {4},
pages = {591-612},
publisher = {Société mathématique de France},
title = {On meromorphic functions defined by a differential system of order $1$},
url = {http://eudml.org/doc/272371},
volume = {132},
year = {2004},
}

TY - JOUR
AU - Torrelli, Tristan
TI - On meromorphic functions defined by a differential system of order $1$
JO - Bulletin de la Société Mathématique de France
PY - 2004
PB - Société mathématique de France
VL - 132
IS - 4
SP - 591
EP - 612
AB - Given a germ $h$ of holomorphic function on $({\mathbb {C}}^n,0)$, we study the condition: “the ideal $\mbox{\rm Ann}_{\mathcal {D}} 1/h$ is generated by operators of order1”. We obtain here full characterizations in the particular cases of Koszul-free germs and unreduced germs of plane curves. Moreover, we prove that this condition holds for a special type of hyperplane arrangements. These results allow us to link this condition to the comparison of de Rham complexes associated with $h$.
LA - eng
KW - germs of meromorphic functions; $\mathcal {D}$-modules; free divisors; arrangements of hyperplanes; logarithmic de Rham complex; logarithmic comparison theorem
UR - http://eudml.org/doc/272371
ER -

References

top
  1. [1] M. Artin – « On the solution of analytic equations », Invent. Math.5 (1968), p. 277–291. Zbl0172.05301MR232018
  2. [2] J. Björk – Analytic 𝒟 -Modules and Applications, Kluwer Academic Publishers, 1993. Zbl0805.32001MR1232191
  3. [3] F. Calderón-Moreno – « Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor », Ann. Sci. École Norm. Sup.32 (1999), p. 577–595. Zbl0955.14013MR1710757
  4. [4] F. Calderón-Moreno & L. Narváez-Macarro – « The module 𝒟 f s for locally quasi-homogeneous free divisors », Compositio Math.134 (2002), p. 59–74. Zbl1017.32023MR1931962
  5. [5] F. Castro-Jiménez, D. Mond & L. Narváez-Macarro – « Cohomology of the complement of a free divisor », Trans. Amer. Math. Soc.348 (1996), p. 3037–3049. Zbl0862.32021MR1363009
  6. [6] F. Castro-Jiménez & J. Ucha – « Explicit comparison theorems for 𝒟 -modules, effective methods in rings of differential operators », J. Symb. Comput.32 (2001), p. 677–685. Zbl1015.16029MR1866710
  7. [7] —, « Free divisors and duality for 𝒟 -modules », 238 (2002), p. 97–105. MR1969307
  8. [8] V. Ginsburg – « Characteristic varieties and vanishing cycles », Invent. Math.84 (1986), p. 327–402. Zbl0598.32013MR833194
  9. [9] A. Grothendieck – « On the de Rham cohomology of algebraic varieties », Pub. Math. IHES29 (1966), p. 95–105. Zbl0145.17602MR199194
  10. [10] M. Holland & D. Mond – « Logarithmic differential forms and the cohomology of the complement of a divisor », Math. Scand.83 (1998), p. 235–254. Zbl0941.32027MR1673922
  11. [11] M. Kashiwara – « B-functions and holonomic systems », Invent. Math.38 (1976), p. 33–53. Zbl0354.35082MR430304
  12. [12] B. Malgrange – « Le polynôme de Bernstein d’une singularité isolée », Lecture Notes in Math., vol. 459, Springer-Verlag, 1975, p. 98–119. Zbl0308.32007MR419827
  13. [13] K. Saito – « Quasihomogene isolierte Singularitäten von Hyperflächen », Invent. Math.14 (1971), p. 123–142. Zbl0224.32011MR294699
  14. [14] —, « Theory of logarithmic differential forms and logarithmic vector fields », J. Fac. Sci. Univ. Tokyo27 (1980), p. 265–291. Zbl0496.32007MR586450
  15. [15] —, « On microlocal b -function », Bull. Soc. Math. France122 (1994), p. 163–184. Zbl0810.32004MR1273899
  16. [16] T. Torrelli – « Équations fonctionnelles pour une fonction sur un espace singulier », Thèse, Université de Nice-Sophia Antipolis, 1998. 
  17. [17] —, « Un calcul de polynôme Bernstein associé à un faisceau de coniques non dégénéré », 331 (2000), p. 47–50. Zbl0965.32028MR1780184
  18. [18] —, « Polynômes de Bernstein associés à une fonction sur une intersection complète à singularité isolée », 52 (2002), p. 221–244. Zbl1015.32009
  19. [19] —, « Sur les germes de fonctions méromorphes définis par un système différentiel d’ordre 1 », prépublication 45/2002 de l’Institut Élie Cartan de Nancy, 2002. 
  20. [20] A. Varchenko – « Asymptotic Hodge structure in the vanishing cohomology », 18 (1982), p. 469–512. Zbl0489.14003
  21. [21] U. Walther – « Bernstein-Sato polynomial versus cohomology of the Milnor fiber for generic arrangements », Compositio Math., to appear; arXiv:math.AG/0204080. Zbl1070.32021MR2099772
  22. [22] J. Wiens & S. Yuzvinsky – « De Rham cohomology of logarithmic forms on arrangements of hyperplanes », Trans. Amer. Math. Soc.349 (1997), p. 1653–1662. Zbl0948.52014MR1407505
  23. [23] T. Yano – « On the theory of b -functions », Publ. RIMS Kyoto Univ.14 (1978), p. 111–202. Zbl0389.32005MR499664

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.