Linear free divisors and the global logarithmic comparison theorem
Michel Granger[1]; David Mond[2]; Alicia Nieto-Reyes[3]; Mathias Schulze[4]
- [1] Université d’Angers Département de Mathématiques 2 bd. Lavoisier 49045 Angers (France)
- [2] University of Warwick Mathematics Institute Coventry CV47AL (England)
- [3] Universidad de Cantabria Departamento de Matematicas, Estadistica y Computacion (Spain)
- [4] Oklahoma State University Department of Mathematics Stillwater, OK 74078 (United States)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 2, page 811-850
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGranger, Michel, et al. "Linear free divisors and the global logarithmic comparison theorem." Annales de l’institut Fourier 59.2 (2009): 811-850. <http://eudml.org/doc/10412>.
@article{Granger2009,
abstract = {A complex hypersurface $D$ in $\mathbb\{C\}^n$ is a linear free divisor (LFD) if its module of logarithmic vector fields has a global basis of linear vector fields. We classify all LFDs for $n$ at most $4$.By analogy with Grothendieck’s comparison theorem, we say that the global logarithmic comparison theorem (GLCT) holds for $D$ if the complex of global logarithmic differential forms computes the complex cohomology of $\mathbb\{C\}^\{n\}\setminus D$. We develop a general criterion for the GLCT for LFDs and prove that it is fulfilled whenever the Lie algebra of linear logarithmic vector fields is reductive. For $n$ at most $4$, we show that the GLCT holds for all LFDs.We show that LFDs arising naturally as discriminants in quiver representation spaces (of real Schur roots) fulfill the GLCT. As a by-product we obtain a topological proof of a theorem of V. Kac on the number of irreducible components of such discriminants.},
affiliation = {Université d’Angers Département de Mathématiques 2 bd. Lavoisier 49045 Angers (France); University of Warwick Mathematics Institute Coventry CV47AL (England); Universidad de Cantabria Departamento de Matematicas, Estadistica y Computacion (Spain); Oklahoma State University Department of Mathematics Stillwater, OK 74078 (United States)},
author = {Granger, Michel, Mond, David, Nieto-Reyes, Alicia, Schulze, Mathias},
journal = {Annales de l’institut Fourier},
keywords = {Free divisor; prehomogeneous vector space; De Rham cohomology; logarithmic comparison theorem; Lie algebra cohomology; quiver representation; free divisor; de Rham cohomology},
language = {eng},
number = {2},
pages = {811-850},
publisher = {Association des Annales de l’institut Fourier},
title = {Linear free divisors and the global logarithmic comparison theorem},
url = {http://eudml.org/doc/10412},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Granger, Michel
AU - Mond, David
AU - Nieto-Reyes, Alicia
AU - Schulze, Mathias
TI - Linear free divisors and the global logarithmic comparison theorem
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 2
SP - 811
EP - 850
AB - A complex hypersurface $D$ in $\mathbb{C}^n$ is a linear free divisor (LFD) if its module of logarithmic vector fields has a global basis of linear vector fields. We classify all LFDs for $n$ at most $4$.By analogy with Grothendieck’s comparison theorem, we say that the global logarithmic comparison theorem (GLCT) holds for $D$ if the complex of global logarithmic differential forms computes the complex cohomology of $\mathbb{C}^{n}\setminus D$. We develop a general criterion for the GLCT for LFDs and prove that it is fulfilled whenever the Lie algebra of linear logarithmic vector fields is reductive. For $n$ at most $4$, we show that the GLCT holds for all LFDs.We show that LFDs arising naturally as discriminants in quiver representation spaces (of real Schur roots) fulfill the GLCT. As a by-product we obtain a topological proof of a theorem of V. Kac on the number of irreducible components of such discriminants.
LA - eng
KW - Free divisor; prehomogeneous vector space; De Rham cohomology; logarithmic comparison theorem; Lie algebra cohomology; quiver representation; free divisor; de Rham cohomology
UR - http://eudml.org/doc/10412
ER -
References
top- D. V. Anosov, S. Kh. Aranson, V. I. Arnold, I. U. Bronshtein, V. Z. Grines, Yu. S. Il’yashenko, Ordinary differential equations and smooth dynamical systems, (1997), Springer-Verlag, Berlin Zbl0858.34001MR970793
- M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277-291 Zbl0172.05301MR232018
- Ragnar-Olaf Buchweitz, David Mond, Linear free divisors and quiver representations, Singularities and computer algebra 324 (2006), 41-77, Cambridge Univ. Press, Cambridge Zbl1101.14013MR2228227
- Francisco Calderón-Moreno, Luis Narváez-Macarro, The module for locally quasi-homogeneous free divisors, Compositio Math. 134 (2002), 59-74 Zbl1017.32023MR1931962
- Francisco J. Calderón Moreno, David Mond, Luis Narváez Macarro, Francisco J. Castro Jiménez, Logarithmic cohomology of the complement of a plane curve, Comment. Math. Helv. 77 (2002), 24-38 Zbl1010.32016MR1898392
- F. J. Castro-Jiménez, J. M. Ucha-Enríquez, Logarithmic comparison theorem and some Euler homogeneous free divisors, Proc. Amer. Math. Soc. 133 (2005), 1417-1422 (electronic) Zbl1077.32012MR2111967
- Francisco J. Castro-Jiménez, Luis Narváez-Macarro, David Mond, Cohomology of the complement of a free divisor, Trans. Amer. Math. Soc. 348 (1996), 3037-3049 Zbl0862.32021MR1363009
- L.M. Fehér, Zs. Patakfalvi, The incidence class and the hierarchy of orbits, (2007)
- Peter Gabriel, Unzerlegbare Darstellungen. I, Manuscripta Math. 6 (1972), 71-103; correction, ibid. 6 (1972), 309 Zbl0232.08001MR332887
- Michel Granger, David Mond, Alicia Nieto, Mathias Schulze, Linear free divisors and the global logarithmic comparison theorem, (2006) Zbl1163.32014
- Michel Granger, Mathias Schulze, On the formal structure of logarithmic vector fields, Compos. Math. 142 (2006), 765-778 Zbl1096.32016MR2231201
- A. Grothendieck, On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1966), 95-103 Zbl0145.17602MR199194
- Herwig Hauser, Gerd Müller, The cancellation property for direct products of analytic space germs, Math. Ann. 286 (1990), 209-223 Zbl0702.32008MR1032931
- James E. Humphreys, Linear algebraic groups, (1975), Springer-Verlag, New York Zbl0325.20039MR396773
- Nathan Jacobson, Lie algebras, (1979), Dover Publications Inc., New York Zbl0121.27504MR559927
- V. G. Kac, Infinite root systems, representations of graphs and invariant theory. II, J. Algebra 78 (1982), 141-162 Zbl0497.17007MR677715
- H. Kraft, Ch. Riedtmann, Geometry of representations of quivers, Representations of algebras (Durham, 1985) 116 (1986), 109-145, Cambridge Univ. Press, Cambridge Zbl0632.16019MR897322
- Alicia Nieto-Reyes, M.Phil Thesis, (2005)
- A. L. Onishchik, È. B. Vinberg, Lie groups and algebraic groups, (1990), Springer-Verlag, Berlin Zbl0722.22004MR1064110
- Peter Orlik, Hiroaki Terao, Arrangements of hyperplanes, 300 (1992), Springer-Verlag, Berlin Zbl0757.55001MR1217488
- Kyoji Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123-142 Zbl0224.32011MR294699
- Kyoji Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265-291 Zbl0496.32007MR586450
- M. Sato, T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155 Zbl0321.14030MR430336
- Aidan Schofield, Semi-invariants of quivers, J. London Math. Soc. (2) 43 (1991), 385-395 Zbl0779.16005MR1113382
- Jean-Pierre Serre, Complex semisimple Lie algebras, (2001), Springer-Verlag, Berlin Zbl1058.17005MR1808366
- Hiroaki Terao, Forms with logarithmic pole and the filtration by the order of the pole, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) (1978), 673-685, Kinokuniya Book Store, Tokyo Zbl0429.32015MR578880
- Tristan Torrelli, On meromorphic functions defined by a differential system of order 1, Bull. Soc. Math. France 132 (2004), 591-612 Zbl1080.32011MR2131905
- Uli Walther, Bernstein-Sato polynomial versus cohomology of the Milnor fiber for generic hyperplane arrangements, Compos. Math. 141 (2005), 121-145 Zbl1070.32021MR2099772
- Jonathan Wiens, Sergey Yuzvinsky, De Rham cohomology of logarithmic forms on arrangements of hyperplanes, Trans. Amer. Math. Soc. 349 (1997), 1653-1662 Zbl0948.52014MR1407505
Citations in EuDML Documents
top- Michele Torielli, Deformations of free and linear free divisors
- Christian Sevenheck, Bernstein polynomials and spectral numbers for linear free divisors
- Alexandru Dimca, Edoardo Sernesi, Syzygies and logarithmic vector fields along plane curves
- G. Denham, H. Schenck, M. Schulze, M. Wakefield, U. Walther, Local cohomology of logarithmic forms
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.