Quasi-semi-stable representations
Bulletin de la Société Mathématique de France (2009)
- Volume: 137, Issue: 2, page 185-223
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topCaruso, Xavier, and Liu, Tong. "Quasi-semi-stable representations." Bulletin de la Société Mathématique de France 137.2 (2009): 185-223. <http://eudml.org/doc/272378>.
@article{Caruso2009,
abstract = {Fix $K$ a $p$-adic field and denote by $G_K$ its absolute Galois group. Let $K_\infty $ be the extension of $K$ obtained by adding $p^n$-th roots of a fixed uniformizer, and $G_\infty \subset G_K$ its absolute Galois group. In this article, we define a class of $p$-adic torsion representations of $G_\infty $, calledquasi-semi-stable. We prove that these representations are “explicitly” described by a certain category of linear algebraic objects. The results of this note should be considered as a first step in the understanding of the structure of quotient of two lattices in a crystalline (resp. semi-stable) Galois representation.},
author = {Caruso, Xavier, Liu, Tong},
journal = {Bulletin de la Société Mathématique de France},
keywords = {torsion Galois representations; semi-stable representations; norm field theory},
language = {eng},
number = {2},
pages = {185-223},
publisher = {Société mathématique de France},
title = {Quasi-semi-stable representations},
url = {http://eudml.org/doc/272378},
volume = {137},
year = {2009},
}
TY - JOUR
AU - Caruso, Xavier
AU - Liu, Tong
TI - Quasi-semi-stable representations
JO - Bulletin de la Société Mathématique de France
PY - 2009
PB - Société mathématique de France
VL - 137
IS - 2
SP - 185
EP - 223
AB - Fix $K$ a $p$-adic field and denote by $G_K$ its absolute Galois group. Let $K_\infty $ be the extension of $K$ obtained by adding $p^n$-th roots of a fixed uniformizer, and $G_\infty \subset G_K$ its absolute Galois group. In this article, we define a class of $p$-adic torsion representations of $G_\infty $, calledquasi-semi-stable. We prove that these representations are “explicitly” described by a certain category of linear algebraic objects. The results of this note should be considered as a first step in the understanding of the structure of quotient of two lattices in a crystalline (resp. semi-stable) Galois representation.
LA - eng
KW - torsion Galois representations; semi-stable representations; norm field theory
UR - http://eudml.org/doc/272378
ER -
References
top- [1] C. Breuil – « Construction de représentations -adiques semi-stables », Ann. Sci. École Norm. Sup.31 (1998), p. 281–327. Zbl0907.14006MR1621389
- [2] —, « Représentations semi-stables et modules fortement divisibles », Invent. Math.136 (1999), p. 89–122. Zbl0965.14021MR1681105
- [3] —, « Groupes -divisibles, groupes finis et modules filtrés », Ann. of Math.152 (2000), p. 489–549. Zbl1042.14018MR1804530
- [4] —, « Integral -adic Hodge theory », in Algebraic geometry 2000, Azumino (Hotaka), Adv. Stud. Pure Math., vol. 36, Math. Soc. Japan, 2002, p. 51–80. Zbl1046.11085MR1971512
- [5] C. Breuil, B. Conrad, F. Diamond & R. Taylor – « On the modularity of elliptic curves over : wild 3-adic exercises », J. Amer. Math. Soc.14 (2001), p. 843–939. Zbl0982.11033MR1839918
- [6] X. Caruso – « Conjecture de l’inertie modérée de Serre », Thèse, Université Paris 13, 2005. Zbl1245.14019
- [7] —, « Représentations semi-stables de torsion dans le case », J. reine angew. Math. 594 (2006), p. 35–92. Zbl1134.14013MR2248152
- [8] —, « -représentations semi-stables », preprint, 2008.
- [9] J.-M. Fontaine – « Représentations -adiques des corps locaux. I », in The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser, 1990, p. 249–309. Zbl0743.11066MR1106901
- [10] —, « Représentations -adiques semi-stables », Astérisque223 (1994), p. 113–184. Zbl0865.14009
- [11] M. Kisin – « Crystalline representations and -crystals », in Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser, 2006, p. 459–496. Zbl1184.11052MR2263197
- [12] —, « Moduli of finite flat group schemes and modularity », to appear in Ann. of Math. Zbl1201.14034
- [13] T. Liu – « Torsion -adic Galois representation and a conjecture by Fontaine », Ann. Sci. École Norm. Sup.40 (2007), p. 633–674. Zbl1163.11043MR2191528
- [14] —, « On lattices in semi-stable representations: a proof of a conjecture of Breuil », Compos. Math.144 (2008), p. 61–88. Zbl1133.14020MR2388556
- [15] M. Raynaud – « Schémas en groupes de type », Bull. Soc. Math. France102 (1974), p. 241–280. Zbl0325.14020MR419467
- [16] J-P. Serre – « Propriétés galoisiennes des points d’ordre fini des courbes elliptiques », Invent. Math.15 (1972), p. 259–331. Zbl0235.14012MR387283
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.