Quasi-semi-stable representations

Xavier Caruso; Tong Liu

Bulletin de la Société Mathématique de France (2009)

  • Volume: 137, Issue: 2, page 185-223
  • ISSN: 0037-9484

Abstract

top
Fix K a p -adic field and denote by G K its absolute Galois group. Let K be the extension of K obtained by adding p n -th roots of a fixed uniformizer, and G G K its absolute Galois group. In this article, we define a class of p -adic torsion representations of G , calledquasi-semi-stable. We prove that these representations are “explicitly” described by a certain category of linear algebraic objects. The results of this note should be considered as a first step in the understanding of the structure of quotient of two lattices in a crystalline (resp. semi-stable) Galois representation.

How to cite

top

Caruso, Xavier, and Liu, Tong. "Quasi-semi-stable representations." Bulletin de la Société Mathématique de France 137.2 (2009): 185-223. <http://eudml.org/doc/272378>.

@article{Caruso2009,
abstract = {Fix $K$ a $p$-adic field and denote by $G_K$ its absolute Galois group. Let $K_\infty $ be the extension of $K$ obtained by adding $p^n$-th roots of a fixed uniformizer, and $G_\infty \subset G_K$ its absolute Galois group. In this article, we define a class of $p$-adic torsion representations of $G_\infty $, calledquasi-semi-stable. We prove that these representations are “explicitly” described by a certain category of linear algebraic objects. The results of this note should be considered as a first step in the understanding of the structure of quotient of two lattices in a crystalline (resp. semi-stable) Galois representation.},
author = {Caruso, Xavier, Liu, Tong},
journal = {Bulletin de la Société Mathématique de France},
keywords = {torsion Galois representations; semi-stable representations; norm field theory},
language = {eng},
number = {2},
pages = {185-223},
publisher = {Société mathématique de France},
title = {Quasi-semi-stable representations},
url = {http://eudml.org/doc/272378},
volume = {137},
year = {2009},
}

TY - JOUR
AU - Caruso, Xavier
AU - Liu, Tong
TI - Quasi-semi-stable representations
JO - Bulletin de la Société Mathématique de France
PY - 2009
PB - Société mathématique de France
VL - 137
IS - 2
SP - 185
EP - 223
AB - Fix $K$ a $p$-adic field and denote by $G_K$ its absolute Galois group. Let $K_\infty $ be the extension of $K$ obtained by adding $p^n$-th roots of a fixed uniformizer, and $G_\infty \subset G_K$ its absolute Galois group. In this article, we define a class of $p$-adic torsion representations of $G_\infty $, calledquasi-semi-stable. We prove that these representations are “explicitly” described by a certain category of linear algebraic objects. The results of this note should be considered as a first step in the understanding of the structure of quotient of two lattices in a crystalline (resp. semi-stable) Galois representation.
LA - eng
KW - torsion Galois representations; semi-stable representations; norm field theory
UR - http://eudml.org/doc/272378
ER -

References

top
  1. [1] C. Breuil – « Construction de représentations p -adiques semi-stables », Ann. Sci. École Norm. Sup.31 (1998), p. 281–327. Zbl0907.14006MR1621389
  2. [2] —, « Représentations semi-stables et modules fortement divisibles », Invent. Math.136 (1999), p. 89–122. Zbl0965.14021MR1681105
  3. [3] —, « Groupes p -divisibles, groupes finis et modules filtrés », Ann. of Math.152 (2000), p. 489–549. Zbl1042.14018MR1804530
  4. [4] —, « Integral p -adic Hodge theory », in Algebraic geometry 2000, Azumino (Hotaka), Adv. Stud. Pure Math., vol. 36, Math. Soc. Japan, 2002, p. 51–80. Zbl1046.11085MR1971512
  5. [5] C. Breuil, B. Conrad, F. Diamond & R. Taylor – « On the modularity of elliptic curves over 𝐐 : wild 3-adic exercises », J. Amer. Math. Soc.14 (2001), p. 843–939. Zbl0982.11033MR1839918
  6. [6] X. Caruso – « Conjecture de l’inertie modérée de Serre », Thèse, Université Paris 13, 2005. Zbl1245.14019
  7. [7] —, « Représentations semi-stables de torsion dans le case e r l t ; p - 1 », J. reine angew. Math. 594 (2006), p. 35–92. Zbl1134.14013MR2248152
  8. [8] —, « 𝔽 p -représentations semi-stables », preprint, 2008. 
  9. [9] J.-M. Fontaine – « Représentations p -adiques des corps locaux. I », in The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser, 1990, p. 249–309. Zbl0743.11066MR1106901
  10. [10] —, « Représentations p -adiques semi-stables », Astérisque223 (1994), p. 113–184. Zbl0865.14009
  11. [11] M. Kisin – « Crystalline representations and F -crystals », in Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser, 2006, p. 459–496. Zbl1184.11052MR2263197
  12. [12] —, « Moduli of finite flat group schemes and modularity », to appear in Ann. of Math. Zbl1201.14034
  13. [13] T. Liu – « Torsion p -adic Galois representation and a conjecture by Fontaine », Ann. Sci. École Norm. Sup.40 (2007), p. 633–674. Zbl1163.11043MR2191528
  14. [14] —, « On lattices in semi-stable representations: a proof of a conjecture of Breuil », Compos. Math.144 (2008), p. 61–88. Zbl1133.14020MR2388556
  15. [15] M. Raynaud – « Schémas en groupes de type ( p , , p ) », Bull. Soc. Math. France102 (1974), p. 241–280. Zbl0325.14020MR419467
  16. [16] J-P. Serre – « Propriétés galoisiennes des points d’ordre fini des courbes elliptiques », Invent. Math.15 (1972), p. 259–331. Zbl0235.14012MR387283

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.