Homotopy invariance of higher signatures and 3 -manifold groups

Michel Matthey; Hervé Oyono-Oyono; Wolfgang Pitsch

Bulletin de la Société Mathématique de France (2008)

  • Volume: 136, Issue: 1, page 1-25
  • ISSN: 0037-9484

Abstract

top
For closed oriented manifolds, we establish oriented homotopy invariance of higher signatures that come from the fundamental group of a large class of orientable 3 -manifolds, including the “piecewise geometric” ones in the sense of Thurston. In particular, this class, that will be carefully described, is the class of all orientable 3 -manifolds if the Thurston Geometrization Conjecture is true. In fact, for this type of groups, we show that the Baum-Connes Conjecture With Coefficients holds. The non-oriented case is also discussed.

How to cite

top

Matthey, Michel, Oyono-Oyono, Hervé, and Pitsch, Wolfgang. "Homotopy invariance of higher signatures and $3$-manifold groups." Bulletin de la Société Mathématique de France 136.1 (2008): 1-25. <http://eudml.org/doc/272411>.

@article{Matthey2008,
abstract = {For closed oriented manifolds, we establish oriented homotopy invariance of higher signatures that come from the fundamental group of a large class of orientable $3$-manifolds, including the “piecewise geometric” ones in the sense of Thurston. In particular, this class, that will be carefully described, is the class of all orientable $3$-manifolds if the Thurston Geometrization Conjecture is true. In fact, for this type of groups, we show that the Baum-Connes Conjecture With Coefficients holds. The non-oriented case is also discussed.},
author = {Matthey, Michel, Oyono-Oyono, Hervé, Pitsch, Wolfgang},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Baum-Connes conjecture; JSJ decomposition; Thurston geometrization conjecture},
language = {eng},
number = {1},
pages = {1-25},
publisher = {Société mathématique de France},
title = {Homotopy invariance of higher signatures and $3$-manifold groups},
url = {http://eudml.org/doc/272411},
volume = {136},
year = {2008},
}

TY - JOUR
AU - Matthey, Michel
AU - Oyono-Oyono, Hervé
AU - Pitsch, Wolfgang
TI - Homotopy invariance of higher signatures and $3$-manifold groups
JO - Bulletin de la Société Mathématique de France
PY - 2008
PB - Société mathématique de France
VL - 136
IS - 1
SP - 1
EP - 25
AB - For closed oriented manifolds, we establish oriented homotopy invariance of higher signatures that come from the fundamental group of a large class of orientable $3$-manifolds, including the “piecewise geometric” ones in the sense of Thurston. In particular, this class, that will be carefully described, is the class of all orientable $3$-manifolds if the Thurston Geometrization Conjecture is true. In fact, for this type of groups, we show that the Baum-Connes Conjecture With Coefficients holds. The non-oriented case is also discussed.
LA - eng
KW - Baum-Connes conjecture; JSJ decomposition; Thurston geometrization conjecture
UR - http://eudml.org/doc/272411
ER -

References

top
  1. [1] C. Anantharaman-Delaroche – « Amenability and exactness for dynamical systems and their C * -algebras », Trans. Amer. Math. Soc.354 (2002), p. 4153–4178. Zbl1035.46039MR1926869
  2. [2] M. T. Anderson – « Scalar curvature and geometrization conjectures for 3 -manifolds », Math. Sci. Res. Inst. Publ.30 (1997), p. 49–82. Zbl0890.57026MR1452867
  3. [3] M. F. Atiyah – Elliptic operators, discrete groups and von Neumann algebras, Astérisque, vol. 32-33, Soc. Math. France, 1976. Zbl0323.58015MR420729
  4. [4] M. F. Atiyah & I. M. Singer – « The index of elliptic operators. I », Ann. of Math. (2) 87 (1968), p. 484–530. Zbl0164.24001MR236950
  5. [5] P. Baum & A. Connes – « Geometric K -theory for Lie groups and foliations », Enseign. Math. (2) 46 (2000), p. 3–42. Zbl0985.46042MR1769535
  6. [6] P. Baum, A. Connes & N. Higson – « Classifying space for proper actions and K -theory of group C * -algebras », Contemp. Math.167 (1994), p. 240–291. Zbl0830.46061MR1292018
  7. [7] P. Baum, S. Millington & R. Plymen – « Local-global principle for the Baum-Connes conjecture with coefficients », K -Theory 28 (2003), p. 1–18. Zbl1034.46073MR1988816
  8. [8] C. Béguin, H. Bettaieb & A. Valette – « K -theory for C * -algebras of one-relator groups », K -Theory 16 (1999), p. 277–298. Zbl0932.46063MR1681180
  9. [9] M. E. B. Bekka, P.-A. Cherix & A. Valette – « Proper affine isometric actions of amenable groups », in Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., vol. 227, Cambridge Univ. Press, 1995, p. 1–4. Zbl0959.43001MR1388307
  10. [10] F. Bonahon – « Geometric structures on 3 -manifolds », in Handbook of geometric topology (R. Daverman et al., éds.), Elsevier, 2002, p. 93–164. Zbl0997.57032MR1886669
  11. [11] P.-A. Chérix, M. Cowling, P. Jolissaint, P. Julg & A. Valette – Groups with the Haagerup property, Gromov’s a-T-menability, Progress in Math., vol. 197, Birhäuser, 2001. Zbl1030.43002MR1852148
  12. [12] J. Cuntz – « K -theoretic amenability for discrete groups », J. reine angew. Math. 344 (1983), p. 180–195. Zbl0511.46066MR716254
  13. [13] M. Dehn – « Über die Topologie des dreidimensionalen Raumes », Math. Ann.69 (1910), p. 137–168. Zbl41.0543.01MR1511580JFM41.0543.01
  14. [14] A. Dold – « Lectures on algebraic topology », in Classics in Mathematics, Springer, 1972, Die Grundlehren der mathematischen Wissenschaften, Band 200, p. 377. Zbl0434.55001MR415602
  15. [15] K. J. Dykema – « Exactness of reduced amalgamated free product C * -algebras », Forum Math.16 (2004), p. 161–180. Zbl1050.46040MR2039095
  16. [16] D. B. A. Epstein – « Periodic flows on 3 -manifolds », Ann. of Math.95 (1972), p. 66–82. Zbl0231.58009MR288785
  17. [17] K. Fujiwara – « 3-manifold groups and property T of Kazhdan », Proc. Japan Acad. Ser. A Math. Sci.75 (1999), p. 103–104. Zbl0957.57004MR1729853
  18. [18] M. Gromov – « Geometric reflections on the Novikov conjecture », in Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., vol. 226, Cambridge Univ. Press, 1995, p. 164–173. Zbl0966.53028MR1388301
  19. [19] J. Hempel – 3 -Manifolds, Annals of Math Studies, vol. 86, Princeton University Press, 1976, Ann. of Math. Studies, No. 86. Zbl0345.57001MR415619
  20. [20] N. Higson – « Bivariant K -theory and the Novikov conjecture », Geom. Funct. Anal.10 (2000), p. 563–581. Zbl0962.46052MR1779613
  21. [21] N. Higson & G. Kasparov – « Operator K -theory for groups which act properly and isometrically on Hilbert space », Electron. Res. Announc. Amer. Math. Soc.3 (1997), p. 131–142. Zbl0888.46046MR1487204
  22. [22] —, « E -theory and K K -theory for groups which act properly and isometrically on Hilbert space », Invent. Math.144 (2001), p. 23–74. Zbl0988.19003MR1821144
  23. [23] F. Hirzebruch – Topological methods in algebraic geometry, Classics in Mathematics, Springer, 1995. Zbl0843.14009MR1335917
  24. [24] W. H. Jaco – « Finitely presented subgroups of three-manifold groups », Invent. Math.13 (1971), p. 335–346. Zbl0232.57003MR300279
  25. [25] W. H. Jaco & P. B. Shalen – Seifert fibered spaces in 3 -manifolds, Mem. Amer. Math. Soc., vol. 21, 1979. Zbl0415.57005MR539411
  26. [26] M. Jankins & W. D. Neumann – « Lectures on Seifert manifolds », in Brandeis Lecture Notes, Brandeis Lecture Notes, vol. 2, Brandeis University, 1983. MR741334
  27. [27] K. Johannson – « Homotopy equivalence of 3 -manifolds with boundaries », in Springer Lecture Notes in Math., vol. 761, 1979. Zbl0412.57007MR551744
  28. [28] F. E. A. Johnson & J. P. Walton – « Parallelizable manifolds and the fundamental group », Mathematika 47 (2000), p. 165–172 (2002). Zbl1016.57004MR1924495
  29. [29] P. Julg – « K -théorie équivariante et produits croisés », C. R. Acad. Sci. Paris Sér. I Math.292 (1981), p. 629–632. Zbl0461.46044MR625361
  30. [30] P. Julg & G. Kasparov – « Operator K -theory for the group SU ( n , 1 ) », J. reine angew. Math. 463 (1995), p. 99–152. Zbl0819.19004MR1332908
  31. [31] M. Kapovich – Hyperbolic manifolds and discrete groups, Progress in Mathematics, vol. 183, Birkhäuser, 2001. Zbl0958.57001MR1792613
  32. [32] G. Kasparov – « Lorentz groups: K -theory of unitary representations and crossed products », Dokl. Akad. Nauk SSSR275 (1984), p. 541–545. Zbl0584.22004MR741223
  33. [33] —, « Equivariant K K -theory and the Novikov conjecture », Invent. Math.91 (1988), p. 147–201. Zbl0647.46053MR918241
  34. [34] E. Kirchberg & S. Wassermann – « Permanence properties of C * -exact groups », Doc. Math.4 (1999), p. 513–558. Zbl0958.46036MR1725812
  35. [35] H. Kneser – « Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten », Jahresbericht der Deut. Math. Verein.38 (1929), p. 248–260. JFM55.0311.03
  36. [36] V. Lafforgue – « K -théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes », Invent. Math.149 (2002), p. 1–95. Zbl1084.19003MR1914617
  37. [37] H. B. Lawson, Jr. & M.-L. Michelsohn – Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, 1989. Zbl0688.57001MR1031992
  38. [38] A. Markov – « The insolubility of the problem of homeomorphy », Dokl. Akad. Nauk SSSR121 (1958), p. 218–220. Zbl0092.00702MR97793
  39. [39] V. Mathai – « The Novikov conjecture for low degree cohomology classes », Geom. Dedicata99 (2003), p. 1–15. Zbl1029.19006MR1998926
  40. [40] J. W. Milnor – « A unique factorization theorem for 3 -manifolds », Amer. J. Math.84 (1962), p. 1–7. Zbl0108.36501MR142125
  41. [41] G. Mislin & A. Valette – « Proper group actions and the Baum-Connes conjecture », in Advanced Course in Mathematics, CRM Barcelona, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser, 2003. Zbl1028.46001MR2027168
  42. [42] A. S. Miščenko – « Infinite-dimensional representations of discrete groups, and higher signatures ( Russian ) », Izv. Akad. Nauk SSSR Ser. Mat.38 (1974), p. 81–106. Zbl0299.57010MR362407
  43. [43] H. Oyono-Oyono – « La conjecture de Baum-Connes pour les groupes agissant sur les arbres », C. R. Acad. Sci. Paris Sér. I Math.326 (1998), p. 799–804. Zbl0918.46062MR1648575
  44. [44] —, « Baum-Connes conjecture and extensions », J. reine angew. Math. 532 (2001), p. 133–149. Zbl0973.46064MR1817505
  45. [45] —, « Baum-Connes conjecture and group actions on trees », K -Theory 24 (2001), p. 115–134. Zbl1008.19001MR1869625
  46. [46] N. Ozawa – « Amenable actions and exactness for discrete groups », C. R. Acad. Sci. Paris Sér. I Math.330 (2000), p. 691–695. Zbl0953.43001MR1763912
  47. [47] M. Puschnigg – « The Kadison-Kaplansky conjecture for word-hyperbolic groups », Invent. Math.149 (2002), p. 153–194. Zbl1019.22002MR1914620
  48. [48] P. Scott – « The geometries of 3 -manifolds », Bull. London Math. Soc.15 (1983), p. 401–487. Zbl0561.57001MR705527
  49. [49] J-P. Serre – Arbres, amalgames, SL 2 , Astérisque, vol. 46, 1983. Zbl0369.20013
  50. [50] W. P. Thurston – Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, 1997, Edited by Silvio Levy. Zbl0873.57001MR1435975
  51. [51] J. L. Tu – « The Baum-Connes conjecture and discrete group actions on trees », K -theory 17 (1999), p. 303–318. Zbl0939.19002MR1706113
  52. [52] A. Valette – « Introduction to the Baum-Connes conjecture », in Lectures in Mathematics, ETH, Zürich (1999), Birkhäuser, 2002. Zbl1136.58013MR1907596

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.