Proof of Nadel’s conjecture and direct image for relative -theory
Bulletin de la Société Mathématique de France (2002)
- Volume: 130, Issue: 2, page 253-307
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topBerthomieu, Alain. "Proof of Nadel’s conjecture and direct image for relative $K$-theory." Bulletin de la Société Mathématique de France 130.2 (2002): 253-307. <http://eudml.org/doc/272417>.
@article{Berthomieu2002,
abstract = {A “relative” $K$-theory group for holomorphic or algebraic vector bundles on a compact or quasiprojective complex manifold is constructed, and Chern-Simons type characteristic classes are defined on this group in the spirit of Nadel. In the projective case, their coincidence with the Abel-Jacobi image of the Chern classes of the bundles is proved. Some applications to families of holomorphic bundles are given and two Riemann-Roch type theorems are proved for these classes.},
author = {Berthomieu, Alain},
journal = {Bulletin de la Société Mathématique de France},
keywords = {relative $K$-theory; holomorphic bundles; characteristic classes; Hodge-Deligne cohomology; Chern-Simons forms; Riemann-Roch theorem},
language = {eng},
number = {2},
pages = {253-307},
publisher = {Société mathématique de France},
title = {Proof of Nadel’s conjecture and direct image for relative $K$-theory},
url = {http://eudml.org/doc/272417},
volume = {130},
year = {2002},
}
TY - JOUR
AU - Berthomieu, Alain
TI - Proof of Nadel’s conjecture and direct image for relative $K$-theory
JO - Bulletin de la Société Mathématique de France
PY - 2002
PB - Société mathématique de France
VL - 130
IS - 2
SP - 253
EP - 307
AB - A “relative” $K$-theory group for holomorphic or algebraic vector bundles on a compact or quasiprojective complex manifold is constructed, and Chern-Simons type characteristic classes are defined on this group in the spirit of Nadel. In the projective case, their coincidence with the Abel-Jacobi image of the Chern classes of the bundles is proved. Some applications to families of holomorphic bundles are given and two Riemann-Roch type theorems are proved for these classes.
LA - eng
KW - relative $K$-theory; holomorphic bundles; characteristic classes; Hodge-Deligne cohomology; Chern-Simons forms; Riemann-Roch theorem
UR - http://eudml.org/doc/272417
ER -
References
top- [1] M. Atiyah & F. Hirzebruch – « Analytic cycles on complex manifolds », Topology1 (1962), p. 25–45. Zbl0108.36401MR145560
- [2] M. Atiyah & I. Singer – « The index of elliptic operators. IV », Ann. of Math.93 (1971), p. 119–138. Zbl0212.28603MR279833
- [3] N. Berline, E. Getzler & M. Vergne – Heat kernels and Dirac operators, Grundlehre der Mathematischen Wissenschaften, vol. 298, Springer-Verlag, Berlin, 1992. Zbl0744.58001MR1215720
- [4] J.-M. Bismut – « The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs », Invent. Math.83 (1986), p. 91–151. Zbl0592.58047MR813584
- [5] —, « Superconnexion currents and complex immersions », Invent. Math.99 (1990), p. 59–113. Zbl0696.58006MR1029391
- [6] —, « Quillen metrics and singular fibres in arbitrary relative dimension », J. Algebraic Geom.6 (1997), p. 19–149. Zbl0871.32003MR1486991
- [7] J.-M. Bismut, H. Gillet & C. Soulé – « Analytic Torsion and Holomorphic Determinant Bundles II. Direct images and Bott-Chern forms », Comm. Math. Phys.115 (1988), p. 79–126. Zbl0651.32017MR929147
- [8] —, « Bott-Chern currents and complex immersions », Duke Math. J.60 (1990), p. 255–284. Zbl0697.58005MR1047123
- [9] J.-M. Bismut & K. Köhler – « Higher analytic torsion forms for direct images and anomaly formulas », J. Algebraic Geom.1 (1992), p. 647–684. Zbl0784.32023MR1174905
- [10] A. Borel & J.-P. Serre – « Le théorème de Riemann-Roch », Bull. Soc. Math. France86 (1958), p. 97–136. Zbl0091.33004MR116022
- [11] J.-L. Brylinski – « Comparison of the Beilinson-Chern classes with the Chern-Cheeger-Simons classes », Advances in Geometry, Progr. Math., vol. 172, Birkhäuser Boston, Boston, MA, 1999, p. 95–105. Zbl0915.57013MR1667678
- [12] J. Cheeger & J. Simons – « Differential characters and geometric invariants », Geometry and Topology (College Park, Md., 1983/84), Lecture Notes in Math., vol. 1167, Springer, Berlin, 1985, p. 50–80. Zbl0621.57010MR827262
- [13] S. Chern & J. Simons – « Characteristic forms and geometric invariants », Ann. of Math.99 (1974), p. 48–69. Zbl0283.53036MR353327
- [14] P. Deligne – « Théorie de Hodge II », Inst. Hautes Études Sci. Publ. Math.40 (1971), p. 5–57. Zbl0219.14007MR498551
- [15] F. El Zein & S. Zucker – « Extendability of normal functions associated to algebraic cycles », Topics in transcendental algebraic geometry (Princeton, N.J., 1981/82), Ann. Math. Studies, vol. 106, Princeton Univ. Press, Princeton, NJ, 1984, p. 269–288. Zbl0545.14017MR756857
- [16] H. Esnault & V. Srinivas – « Chern classes of vector bundles with holomorphic connections on a complete smooth complex variety », J. Diff. Geom.36 (1992), p. 257–267. Zbl0757.14008MR1180383
- [17] H. Esnault & E. Viehweg – « Deligne-Beilinson cohomology », Beilinson’s conjectures on special values of -functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, p. 43–91. Zbl0656.14012MR944991
- [18] H. Gillet – « Riemann-Roch theorems for higher algebraic -theory », Adv. in Math.40 (1981), p. 203–289. Zbl0478.14010MR624666
- [19] —, « Deligne homology and Abel-Jacobi maps », Bull. Amer. Math. Soc.10 (1984), p. 285–288. Zbl0539.14014MR733697
- [20] H. Gillet & D. Grayson – « The loop space of the q-construction », Illinois J. Math.31 (1987), p. 574–597. Zbl0628.55011MR909784
- [21] H. Gillet & C. Soulé – « Arithmetic Chow groups and differential characters », Algebraic -theory: conections with geometry and topology (J. Jardine V. Snaith, éds.), Kluwer Academic, Dordrecht, 1989, p. 30–68. Zbl0719.14003MR1045844
- [22] P. Greiner – « An asymptotic expansion for the heat equation », Arch. Rational Mech. Anal.41 (1971), p. 163–218. Zbl0238.35038MR331441
- [23] A. Grothendieck – « La théorie des classes de Chern », Bull. Soc. Math. France86 (1958), p. 137–154. Zbl0091.33201MR116023
- [24] A. Iliev & D. Markushevich – « The Abel-Jacobi map for a cubic threefold and periods of Fano threefolds of degree14 », Doc. Math.5 (2000), p. 23–47. Zbl0938.14021MR1739270
- [25] U. Jannsen – « Deligne homology, Hodge--conjecture and motives », Beilinson’s conjectures on special values of -functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, p. 305–372. Zbl0701.14019MR944998
- [26] J.-P. Jouanolou – « Une suite exacte de Mayer-Vietoris en -théorie algébrique », Algebraic -theory, I: Higher -theories, Lecture Notes in Math., vol. 341, Springer-Verlag, New York, 1973, p. 293–376. Zbl0291.14006MR409476
- [27] M. Karoubi – -theory, an Introduction, Grundlehre der Mathematischen Wissenschaften, vol. 226, Springer-Verlag, Berlin, 1978. Zbl0382.55002MR488029
- [28] —, Homologie cyclique et K-théorie, Astérisque, vol. 149, Société Mathématique de France, 1987. Zbl0648.18008
- [29] —, « Théorie générale des classes caractéristiques secondaires », -Theory 4 (1990), p. 55–87. Zbl0716.57018
- [30] —, « Classes caractéristiques de fibrés feuilletés, holomorphes ou algébriques », -Theory 8 (1994), p. 153–211. Zbl0833.57012
- [31] J. Lewis – A survey of the Hodge conjecture, Introductory lectures in transcendental algebraic geometry, Université de Montréal, Centre de Recherches Mathématiques, Montréal, QC, 1991. Zbl0778.14002MR1139112
- [32] D. Markushevich & A. Tikhomirov – « The Abel-Jacobi map of a moduli component of vector bundles on the cubic threefold », J. Alg. Geom.10 (2001), p. 37–62. Zbl0987.14028MR1795549
- [33] D. Mumford – Abelian varieties, Tata institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of fundamental Research, Bombay; Oxford University Press, London, 1970. Zbl0223.14022MR282985
- [34] J. Murre – « Un résultat en théorie des cycles algébriques de codimension2 », C. R. Acad. Sci. Paris, Sér. I Math. 296 (1983), p. 981–984. Zbl0532.14002MR777590
- [35] A. Nadel – « Invariants for holomorphic vector bundles », Math. Ann.309 (1997), p. 37–52. Zbl0888.32009MR1467644
- [36] D. Roessler – « Analytic torsion for cubes of vector bundles and Gillet’s Riemann-Roch theorem », J. Alg. Geom.8 (1999), p. 497–518. Zbl0944.14004MR1689353
- [37] K. Yoshioka – « Albanese map of moduli of stable sheaves on abelian surfaces », Preprint, math.AG/9901013, 1999. MR1689173
- [38] —, « Some notes on the moduli of stable sheaves on elliptic surfaces », Nagoya Math. J.154 (1999), p. 73–102. Zbl0955.14032MR1689173
- [39] S. Zucker – « The Cheeger-Simons invariant as a Chern class », Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, p. 397–417. Zbl0790.14013MR1463711
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.