Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Proof of Nadel’s conjecture and direct image for relative K -theory

Alain Berthomieu — 2002

Bulletin de la Société Mathématique de France

A “relative” K -theory group for holomorphic or algebraic vector bundles on a compact or quasiprojective complex manifold is constructed, and Chern-Simons type characteristic classes are defined on this group in the spirit of Nadel. In the projective case, their coincidence with the Abel-Jacobi image of the Chern classes of the bundles is proved. Some applications to families of holomorphic bundles are given and two Riemann-Roch type theorems are proved for these classes.

Page 1

Download Results (CSV)