Lagrangian fibrations on generalized Kummer varieties
Bulletin de la Société Mathématique de France (2007)
- Volume: 135, Issue: 2, page 283-298
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topGulbrandsen, Martin G.. "Lagrangian fibrations on generalized Kummer varieties." Bulletin de la Société Mathématique de France 135.2 (2007): 283-298. <http://eudml.org/doc/272424>.
@article{Gulbrandsen2007,
abstract = {We investigate the existence of Lagrangian fibrations on the generalized Kummer varieties of Beauville. For a principally polarized abelian surface $A$ of Picard number one we find the following: The Kummer variety $K^nA$ is birationally equivalent to another irreducible symplectic variety admitting a Lagrangian fibration, if and only if $n$ is a perfect square. And this is the case if and only if $K^nA$ carries a divisor with vanishing Beauville-Bogomolov square.},
author = {Gulbrandsen, Martin G.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {generalized Kummer varieties; lagrangian fibrations; symplectic varieties},
language = {eng},
number = {2},
pages = {283-298},
publisher = {Société mathématique de France},
title = {Lagrangian fibrations on generalized Kummer varieties},
url = {http://eudml.org/doc/272424},
volume = {135},
year = {2007},
}
TY - JOUR
AU - Gulbrandsen, Martin G.
TI - Lagrangian fibrations on generalized Kummer varieties
JO - Bulletin de la Société Mathématique de France
PY - 2007
PB - Société mathématique de France
VL - 135
IS - 2
SP - 283
EP - 298
AB - We investigate the existence of Lagrangian fibrations on the generalized Kummer varieties of Beauville. For a principally polarized abelian surface $A$ of Picard number one we find the following: The Kummer variety $K^nA$ is birationally equivalent to another irreducible symplectic variety admitting a Lagrangian fibration, if and only if $n$ is a perfect square. And this is the case if and only if $K^nA$ carries a divisor with vanishing Beauville-Bogomolov square.
LA - eng
KW - generalized Kummer varieties; lagrangian fibrations; symplectic varieties
UR - http://eudml.org/doc/272424
ER -
References
top- [1] A. Beauville – « Variétés Kähleriennes dont la première classe de Chern est nulle », J. Differential Geom.18 (1983), p. 755–782. Zbl0537.53056MR730926
- [2] C. Birkenhake & H. Lange – Complex abelian varieties, second éd., Grundlehren der Mathematischen Wissenschaften, vol. 302, Springer, 2004. Zbl1056.14063MR2062673
- [3] J. Briançon – « Description de », Invent. Math.41 (1977), p. 45–89. Zbl0353.14004MR457432
- [4] M. Britze – « On the cohomology of generalized Kummer varieties », Thèse, Universität zu Köln, 2002.
- [5] M. Gulbrandsen – « Fibrations on generalized Kummer varieties », Thèse, University of Oslo, 2006.
- [6] D. Huybrechts – « Compact hyperkähler manifolds », in Calabi-Yau manifolds and related geometries (Nordfjordeid, 2001), Universitext, Springer, 2003, Lectures from the Summer School held in Nordfjordeid, June2001, p. 161–225. Zbl1016.53038MR1963562
- [7] D. Markushevich – « Rational Lagrangian fibrations on punctual Hilbert schemes of surfaces », arXiv:math.AG/0509346. Zbl1102.14031MR2234244
- [8] D. Matsushita – « On fibre space structures of a projective irreducible symplectic manifold », Topology38 (1999), p. 79–83. Zbl0932.32027MR1644091
- [9] —, « Addendum: “On fibre space structures of a projective irreducible symplectic manifold” [Topology 38 (1999), p. 79–83] », Topology40 (2001), p. 431–432. Zbl0932.32027MR1644091
- [10] —, « Holomorphic symplectic manifolds and Lagrangian fibrations », Acta Appl. Math. 75 (2003), p. 117–123, Monodromy and differential equations (Moscow, 2001). Zbl1030.53075MR1975562
- [11] —, « Higher direct images of dualizing sheaves of Lagrangian fibrations », Amer. J. Math.127 (2005), p. 243–259. Zbl1069.14011MR2130616
- [12] S. Mukai – « Duality between and with its application to Picard sheaves », Nagoya Math. J.81 (1981), p. 153–175. Zbl0417.14036MR607081
- [13] —, « Fourier functor and its application to the moduli of bundles on an abelian variety », in Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, 1987, p. 515–550. Zbl0672.14025MR946249
- [14] D. Mumford – Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay, 1970. Zbl0223.14022MR282985
- [15] J. Sawon – « Lagrangian fibrations on Hilbert schemes of points on surfaces », arXiv:math.AG/0509224. Zbl1123.14008MR2306277
- [16] K. Yoshioka – « Moduli spaces of stable sheaves on abelian surfaces », Math. Ann.321 (2001), p. 817–884. Zbl1066.14013MR1872531
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.