Lagrangian fibrations on generalized Kummer varieties

Martin G. Gulbrandsen

Bulletin de la Société Mathématique de France (2007)

  • Volume: 135, Issue: 2, page 283-298
  • ISSN: 0037-9484

Abstract

top
We investigate the existence of Lagrangian fibrations on the generalized Kummer varieties of Beauville. For a principally polarized abelian surface A of Picard number one we find the following: The Kummer variety K n A is birationally equivalent to another irreducible symplectic variety admitting a Lagrangian fibration, if and only if n is a perfect square. And this is the case if and only if K n A carries a divisor with vanishing Beauville-Bogomolov square.

How to cite

top

Gulbrandsen, Martin G.. "Lagrangian fibrations on generalized Kummer varieties." Bulletin de la Société Mathématique de France 135.2 (2007): 283-298. <http://eudml.org/doc/272424>.

@article{Gulbrandsen2007,
abstract = {We investigate the existence of Lagrangian fibrations on the generalized Kummer varieties of Beauville. For a principally polarized abelian surface $A$ of Picard number one we find the following: The Kummer variety $K^nA$ is birationally equivalent to another irreducible symplectic variety admitting a Lagrangian fibration, if and only if $n$ is a perfect square. And this is the case if and only if $K^nA$ carries a divisor with vanishing Beauville-Bogomolov square.},
author = {Gulbrandsen, Martin G.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {generalized Kummer varieties; lagrangian fibrations; symplectic varieties},
language = {eng},
number = {2},
pages = {283-298},
publisher = {Société mathématique de France},
title = {Lagrangian fibrations on generalized Kummer varieties},
url = {http://eudml.org/doc/272424},
volume = {135},
year = {2007},
}

TY - JOUR
AU - Gulbrandsen, Martin G.
TI - Lagrangian fibrations on generalized Kummer varieties
JO - Bulletin de la Société Mathématique de France
PY - 2007
PB - Société mathématique de France
VL - 135
IS - 2
SP - 283
EP - 298
AB - We investigate the existence of Lagrangian fibrations on the generalized Kummer varieties of Beauville. For a principally polarized abelian surface $A$ of Picard number one we find the following: The Kummer variety $K^nA$ is birationally equivalent to another irreducible symplectic variety admitting a Lagrangian fibration, if and only if $n$ is a perfect square. And this is the case if and only if $K^nA$ carries a divisor with vanishing Beauville-Bogomolov square.
LA - eng
KW - generalized Kummer varieties; lagrangian fibrations; symplectic varieties
UR - http://eudml.org/doc/272424
ER -

References

top
  1. [1] A. Beauville – « Variétés Kähleriennes dont la première classe de Chern est nulle », J. Differential Geom.18 (1983), p. 755–782. Zbl0537.53056MR730926
  2. [2] C. Birkenhake & H. Lange – Complex abelian varieties, second éd., Grundlehren der Mathematischen Wissenschaften, vol. 302, Springer, 2004. Zbl1056.14063MR2062673
  3. [3] J. Briançon – « Description de Hilb n C { x , y } », Invent. Math.41 (1977), p. 45–89. Zbl0353.14004MR457432
  4. [4] M. Britze – « On the cohomology of generalized Kummer varieties », Thèse, Universität zu Köln, 2002. 
  5. [5] M. Gulbrandsen – « Fibrations on generalized Kummer varieties », Thèse, University of Oslo, 2006. 
  6. [6] D. Huybrechts – « Compact hyperkähler manifolds », in Calabi-Yau manifolds and related geometries (Nordfjordeid, 2001), Universitext, Springer, 2003, Lectures from the Summer School held in Nordfjordeid, June2001, p. 161–225. Zbl1016.53038MR1963562
  7. [7] D. Markushevich – « Rational Lagrangian fibrations on punctual Hilbert schemes of K 3 surfaces », arXiv:math.AG/0509346. Zbl1102.14031MR2234244
  8. [8] D. Matsushita – « On fibre space structures of a projective irreducible symplectic manifold », Topology38 (1999), p. 79–83. Zbl0932.32027MR1644091
  9. [9] —, « Addendum: “On fibre space structures of a projective irreducible symplectic manifold” [Topology 38 (1999), p. 79–83] », Topology40 (2001), p. 431–432. Zbl0932.32027MR1644091
  10. [10] —, « Holomorphic symplectic manifolds and Lagrangian fibrations », Acta Appl. Math. 75 (2003), p. 117–123, Monodromy and differential equations (Moscow, 2001). Zbl1030.53075MR1975562
  11. [11] —, « Higher direct images of dualizing sheaves of Lagrangian fibrations », Amer. J. Math.127 (2005), p. 243–259. Zbl1069.14011MR2130616
  12. [12] S. Mukai – « Duality between D ( X ) and D ( X ^ ) with its application to Picard sheaves », Nagoya Math. J.81 (1981), p. 153–175. Zbl0417.14036MR607081
  13. [13] —, « Fourier functor and its application to the moduli of bundles on an abelian variety », in Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, 1987, p. 515–550. Zbl0672.14025MR946249
  14. [14] D. Mumford – Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay, 1970. Zbl0223.14022MR282985
  15. [15] J. Sawon – « Lagrangian fibrations on Hilbert schemes of points on K 3 surfaces », arXiv:math.AG/0509224. Zbl1123.14008MR2306277
  16. [16] K. Yoshioka – « Moduli spaces of stable sheaves on abelian surfaces », Math. Ann.321 (2001), p. 817–884. Zbl1066.14013MR1872531

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.