The search session has expired. Please query the service again.
In questo lavoro vengono costruite famiglie di 3-folds algebriche e non singolari di tipo generale tali che l'invariante sia il minimo possibile rispetto al genere geometrico , quando si suppone che il morfismo canonico sia birazionale. Per tali 3-folds vale la relazione lineare inoltre l'immagine del morfismo canonico é una varietà di Castelnuovo di .
Studying the connection between the title configuration and Kummer surfaces we write explicit quadratic equations for the latter. The main results are presented in Theorems 8 and 16.
We show that if the degree of a nonsingular projective variety is high enough, maximization of any of the most important numerical invariants, such as class, Betti number, and any of the Chern or middle Hodge numbers, leads to the same class of extremal varieties. Moreover, asymptotically (say, for varieties whose total Betti number is big enough) the ratio of any two of these invariants tends to a well-defined constant.
Étant donnée une variété kählérienne compacte , on étudie dans l’espace vectoriel réel de cohomologie de Dolbeault le cône convexe des classes de Kähler ainsi que celui, plus grand, des classes de courants positifs fermés de type . Lorsque est projective, les traces de ces cônes sur l’espace de Néron–Severi engendré par les classes entières sont respectivement le cône des classes de diviseurs amples et l’adhérence de celui des classes de diviseurs effectifs.
We formulate the equivalence problem, in the sense of É. Cartan, for families of minimal rational curves on uniruled projective manifolds. An important invariant of this equivalence problem is the variety of minimal rational tangents. We study the case when varieties of minimal rational tangents at general points form an isotrivial family. The main question in this case is for which projective variety , a family of minimal rational curves with -isotrivial varieties of minimal rational tangents...
Currently displaying 1 –
20 of
69