Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps

Martine Babillot; Marc Peigné

Bulletin de la Société Mathématique de France (2006)

  • Volume: 134, Issue: 1, page 119-163
  • ISSN: 0037-9484

Abstract

top
We consider a large class of non compact hyperbolic manifolds M = n / Γ with cusps and we prove that the winding process ( Y t ) generated by a closed 1 -form supported on a neighborhood of a cusp 𝒞 , satisfies a limit theorem, with an asymptotic stable law and a renormalising factor depending only on the rank of the cusp 𝒞 and the Poincaré exponent δ of Γ . No assumption on the value of δ is required and this theorem generalises previous results due to Y. Guivarc’h, Y. Le Jan, J. Franchi and N. Enriquez.

How to cite

top

Babillot, Martine, and Peigné, Marc. "Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps." Bulletin de la Société Mathématique de France 134.1 (2006): 119-163. <http://eudml.org/doc/272432>.

@article{Babillot2006,
abstract = {We consider a large class of non compact hyperbolic manifolds $M= \mathbb \{H\} ^n/\Gamma $ with cusps and we prove that the winding process $(Y_t)$ generated by a closed $1$-form supported on a neighborhood of a cusp $\mathcal \{C\} $, satisfies a limit theorem, with an asymptotic stable law and a renormalising factor depending only on the rank of the cusp $\mathcal \{C\} $ and the Poincaré exponent $\delta $ of $\Gamma $. No assumption on the value of $\delta $ is required and this theorem generalises previous results due to Y. Guivarc’h, Y. Le Jan, J. Franchi and N. Enriquez.},
author = {Babillot, Martine, Peigné, Marc},
journal = {Bulletin de la Société Mathématique de France},
keywords = {geodesic flow; asymptotic winding; hyperbolic manifolds; central limit theorem; stable law; transfer operator},
language = {eng},
number = {1},
pages = {119-163},
publisher = {Société mathématique de France},
title = {Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps},
url = {http://eudml.org/doc/272432},
volume = {134},
year = {2006},
}

TY - JOUR
AU - Babillot, Martine
AU - Peigné, Marc
TI - Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps
JO - Bulletin de la Société Mathématique de France
PY - 2006
PB - Société mathématique de France
VL - 134
IS - 1
SP - 119
EP - 163
AB - We consider a large class of non compact hyperbolic manifolds $M= \mathbb {H} ^n/\Gamma $ with cusps and we prove that the winding process $(Y_t)$ generated by a closed $1$-form supported on a neighborhood of a cusp $\mathcal {C} $, satisfies a limit theorem, with an asymptotic stable law and a renormalising factor depending only on the rank of the cusp $\mathcal {C} $ and the Poincaré exponent $\delta $ of $\Gamma $. No assumption on the value of $\delta $ is required and this theorem generalises previous results due to Y. Guivarc’h, Y. Le Jan, J. Franchi and N. Enriquez.
LA - eng
KW - geodesic flow; asymptotic winding; hyperbolic manifolds; central limit theorem; stable law; transfer operator
UR - http://eudml.org/doc/272432
ER -

References

top
  1. [1] E. Artin – Ein mechanisches System mit quasiergodishen Bahnen, p.499–501, Collected papers, Addison Wesley, 1965. MR176888JFM50.0677.11
  2. [2] M. Babillot & M. Peigné – « Homologie des géodésiques fermées sur des variétés hyperboliques avec bouts cuspidaux », Ann. Sci. École Norm. Sup.33 (2000), p. 81–120. Zbl0984.37033MR1743720
  3. [3] A. F. Beardon – « The exponent of convergence of Poincaré series », Proc. London Math. Soc.18 (1968), p. 461–483. Zbl0162.38801MR227402
  4. [4] M. Bourdon – « Structure conforme au bord et flot géodésique d’un CAT ( - 1 ) -espace », Enseign. Math.118 (1995), p. 63–102. Zbl0871.58069MR1341941
  5. [5] R. Bowen – « Equilibrium states and the ergodic theory of Anosov diffeomorphisms », Lecture Notes in Mathematics, vol. 470, 1975. Zbl0308.28010MR442989
  6. [6] R. Bowen & C. Series – « Markov maps associated with Fuchsian groups », Publ. Math. IHÉS50 (1979), p. 153–170. Zbl0439.30033MR556585
  7. [7] J.-P. Conze & S. Le Borgne – « Méthode de martingales et flot géodésique sur une surface de courbure constante négative », Ergo. Th. Dyn. Syst.21 (2001), p. 421–441. Zbl0983.37034MR1827112
  8. [8] F. Dal’bo, J.-P. Otal & M. Peigné – « Séries de Poincaré des groupes géométriquement finis », Israel J. Math.118 (2000), p. 109–124. Zbl0968.53023MR1776078
  9. [9] F. Dal’bo & M. Peigné – « Groupes du ping-pong et géodésiques fermées en courbure - 1 », Ann. Inst. Fourier46 (1996), p. 755–799. Zbl0853.53032MR1411728
  10. [10] W. Doeblin & R. Fortet – « Sur les chaînes à liaison complètes », Bull. Soc. Math. France65 (1937), p. 132–148. MR1505076JFM63.1077.05
  11. [11] P. Eberlein – « Geodesic flows on negatively curved manifolds », Ann. of Math.95 (1973), p. 492–510. Zbl0217.47304MR310926
  12. [12] N. Enriquez, J. Franchi & Y. Le Jan – « Central Limit Theorem for the geodesic flow associated with a Kleinian group, case δ g t ; 1 2 d », J. Math. Pures Appl.80 (2001), p. 153–175. Zbl0986.37009MR1815697
  13. [13] N. Enriquez & Y. Le Jan – « Statistic of the winding of geodesics on a Riemann surface with finite volume and constant negative curvature », Rev. Mat. Ibero.13 (1997), p. 377–401. Zbl0907.58054MR1617645
  14. [14] J. Franchi – « Asymptotic singular homology of a complete hyperbolic 3 - manifold of finite volume », Proc. London Math. Soc.79 (1999), p. 451–480. Zbl1056.58012MR1702250
  15. [15] I. M. Gel’fand & I. I. Pyateckii-Sapiro – « A theorem of Poincaré », Dokl. Akad. Nauk. SSSR127 (1959), p. 490–493. Zbl0107.17101
  16. [16] E. Ghys & P. de La Harpe – « Sur les groupes hyperboliques d’après M.Gromov », Progress in Math., vol. 83, Birkhaüser, 1988. Zbl0731.20025
  17. [17] Y. Guivarc’h & J. Hardy – « Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov », Ann. Inst. Henri Poincaré 24, p. 73–98. Zbl0649.60041MR937957
  18. [18] Y. Guivarc’h & Y. Le Jan – « Asymptotic winding of the geodesic flow on modular surfaces and continuous fractions », Ann. Sci. École Norm. Sup.26 (1993), p. 23–50. Zbl0784.60076MR1209912
  19. [19] —, « Note rectificative: “Asymptotic winding of the geodesic flow on modular surfaces and continuous fractions" », Ann. Sci. École Norm. Sup. (1996), p. 811–814. Zbl0878.60052
  20. [20] H. Hennion – « Sur un théorème spectral et son application aux noyaux Lipschitziens », Proc. Amer. Math. Soc.118 (1993), p. 637–634. Zbl0772.60049MR1129880
  21. [21] H. Hennion & L. Hervé – « Limit theorem for Markov chains and stochastic properties of dynamical systems by quasi-compactness », Lecture Notes in Math., vol. 1766. Zbl0983.60005
  22. [22] V. Kaïmanovitch – « Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds », Ann. Inst. Henri Poincaré 53 (1900), p. 361–393. Zbl0725.58026MR1096098
  23. [23] S. Lalley – « Closed geodesics in homology classes on surfaces of variable negative curvature », Duke Math. J.58 (1989), p. 795–821. Zbl0732.53035MR1016446
  24. [24] S. Le Borgne – « Principe d’invariance pour les flots diagonaux sur SL ( d , ) / SL ( d , ) », Ann. Inst. Henri Poincaré38 (2002), p. 581–612. Zbl1009.60018MR1914940
  25. [25] Y. Le Jan – « The central Limit Theorem for the geodesic flow on non compact manifolds of constant negative curvature », Duke Math. J.74 (1994), p. 159–175. Zbl0809.58031MR1271468
  26. [26] B. Maskitt – Kleinian Groups, Springer-Verlag, Berlin, 1988. Zbl0627.30039MR959135
  27. [27] J.-P. Otal & M. Peigné – « Principe variationnel et groupes Kleiniens », To appear in Duke Math. J. Zbl1112.37019MR2097356
  28. [28] W. Parry & M. Pollicott – « Zeta functions and the periodic orbit stucture of hyperbolic dynamics », Astérisque (1990), p. 187–188. Zbl0726.58003MR1085356
  29. [29] S. J. Patterson – « The limit set of a Fuchsian group », Acta Math.136 (1976), p. 241–273. Zbl0336.30005MR450547
  30. [30] M. Peigné – « On the Patterson-Sullivan measure of some discrete groups of isometries », Israel J. Math.133 (2003), p. 77–88. Zbl1017.37022MR1968423
  31. [31] J. G. Ratcliffe – Foundations of Hyperbolic Geometry, Springer Verlag, New York, 1994. MR1299730
  32. [32] M. Ratner – « The Central Limit Theorem for geodesic flows on n -manifolds of negative curvature », Israel J. Math.16 (1973), p. 181–197. Zbl0283.58010MR333121
  33. [33] C. Series – « The modular surface and continued fractions », J. London Math. Soc.31 (1985), p. 69–80. Zbl0545.30001MR810563
  34. [34] J. G. Sinai – « The Central Limit Theorem for geodesic flows on manifolds of constant negative curvature », Dokl. Akad. Nauk. SSSR1 (1960), p. 983–987. Zbl0129.31103MR125607
  35. [35] B. Stratmann & S. L. Velani – « The Patterson measure for geometrically finite groups with parabolic elements, new and old », Proc. Lond. Math. Soc.71 (1995), p. 197–220. Zbl0821.58026MR1327939
  36. [36] D. Sullivan – « The density at infinity of a discrete group of hyperbolic motions », Publ. Math. IHÉS50 (1979), p. 171–202. Zbl0439.30034MR556586

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.