Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps
Bulletin de la Société Mathématique de France (2006)
- Volume: 134, Issue: 1, page 119-163
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topBabillot, Martine, and Peigné, Marc. "Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps." Bulletin de la Société Mathématique de France 134.1 (2006): 119-163. <http://eudml.org/doc/272432>.
@article{Babillot2006,
abstract = {We consider a large class of non compact hyperbolic manifolds $M= \mathbb \{H\} ^n/\Gamma $ with cusps and we prove that the winding process $(Y_t)$ generated by a closed $1$-form supported on a neighborhood of a cusp $\mathcal \{C\} $, satisfies a limit theorem, with an asymptotic stable law and a renormalising factor depending only on the rank of the cusp $\mathcal \{C\} $ and the Poincaré exponent $\delta $ of $\Gamma $. No assumption on the value of $\delta $ is required and this theorem generalises previous results due to Y. Guivarc’h, Y. Le Jan, J. Franchi and N. Enriquez.},
author = {Babillot, Martine, Peigné, Marc},
journal = {Bulletin de la Société Mathématique de France},
keywords = {geodesic flow; asymptotic winding; hyperbolic manifolds; central limit theorem; stable law; transfer operator},
language = {eng},
number = {1},
pages = {119-163},
publisher = {Société mathématique de France},
title = {Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps},
url = {http://eudml.org/doc/272432},
volume = {134},
year = {2006},
}
TY - JOUR
AU - Babillot, Martine
AU - Peigné, Marc
TI - Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps
JO - Bulletin de la Société Mathématique de France
PY - 2006
PB - Société mathématique de France
VL - 134
IS - 1
SP - 119
EP - 163
AB - We consider a large class of non compact hyperbolic manifolds $M= \mathbb {H} ^n/\Gamma $ with cusps and we prove that the winding process $(Y_t)$ generated by a closed $1$-form supported on a neighborhood of a cusp $\mathcal {C} $, satisfies a limit theorem, with an asymptotic stable law and a renormalising factor depending only on the rank of the cusp $\mathcal {C} $ and the Poincaré exponent $\delta $ of $\Gamma $. No assumption on the value of $\delta $ is required and this theorem generalises previous results due to Y. Guivarc’h, Y. Le Jan, J. Franchi and N. Enriquez.
LA - eng
KW - geodesic flow; asymptotic winding; hyperbolic manifolds; central limit theorem; stable law; transfer operator
UR - http://eudml.org/doc/272432
ER -
References
top- [1] E. Artin – Ein mechanisches System mit quasiergodishen Bahnen, p.499–501, Collected papers, Addison Wesley, 1965. MR176888JFM50.0677.11
- [2] M. Babillot & M. Peigné – « Homologie des géodésiques fermées sur des variétés hyperboliques avec bouts cuspidaux », Ann. Sci. École Norm. Sup.33 (2000), p. 81–120. Zbl0984.37033MR1743720
- [3] A. F. Beardon – « The exponent of convergence of Poincaré series », Proc. London Math. Soc.18 (1968), p. 461–483. Zbl0162.38801MR227402
- [4] M. Bourdon – « Structure conforme au bord et flot géodésique d’un CAT -espace », Enseign. Math.118 (1995), p. 63–102. Zbl0871.58069MR1341941
- [5] R. Bowen – « Equilibrium states and the ergodic theory of Anosov diffeomorphisms », Lecture Notes in Mathematics, vol. 470, 1975. Zbl0308.28010MR442989
- [6] R. Bowen & C. Series – « Markov maps associated with Fuchsian groups », Publ. Math. IHÉS50 (1979), p. 153–170. Zbl0439.30033MR556585
- [7] J.-P. Conze & S. Le Borgne – « Méthode de martingales et flot géodésique sur une surface de courbure constante négative », Ergo. Th. Dyn. Syst.21 (2001), p. 421–441. Zbl0983.37034MR1827112
- [8] F. Dal’bo, J.-P. Otal & M. Peigné – « Séries de Poincaré des groupes géométriquement finis », Israel J. Math.118 (2000), p. 109–124. Zbl0968.53023MR1776078
- [9] F. Dal’bo & M. Peigné – « Groupes du ping-pong et géodésiques fermées en courbure », Ann. Inst. Fourier46 (1996), p. 755–799. Zbl0853.53032MR1411728
- [10] W. Doeblin & R. Fortet – « Sur les chaînes à liaison complètes », Bull. Soc. Math. France65 (1937), p. 132–148. MR1505076JFM63.1077.05
- [11] P. Eberlein – « Geodesic flows on negatively curved manifolds », Ann. of Math.95 (1973), p. 492–510. Zbl0217.47304MR310926
- [12] N. Enriquez, J. Franchi & Y. Le Jan – « Central Limit Theorem for the geodesic flow associated with a Kleinian group, case », J. Math. Pures Appl.80 (2001), p. 153–175. Zbl0986.37009MR1815697
- [13] N. Enriquez & Y. Le Jan – « Statistic of the winding of geodesics on a Riemann surface with finite volume and constant negative curvature », Rev. Mat. Ibero.13 (1997), p. 377–401. Zbl0907.58054MR1617645
- [14] J. Franchi – « Asymptotic singular homology of a complete hyperbolic manifold of finite volume », Proc. London Math. Soc.79 (1999), p. 451–480. Zbl1056.58012MR1702250
- [15] I. M. Gel’fand & I. I. Pyateckii-Sapiro – « A theorem of Poincaré », Dokl. Akad. Nauk. SSSR127 (1959), p. 490–493. Zbl0107.17101
- [16] E. Ghys & P. de La Harpe – « Sur les groupes hyperboliques d’après M.Gromov », Progress in Math., vol. 83, Birkhaüser, 1988. Zbl0731.20025
- [17] Y. Guivarc’h & J. Hardy – « Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov », Ann. Inst. Henri Poincaré 24, p. 73–98. Zbl0649.60041MR937957
- [18] Y. Guivarc’h & Y. Le Jan – « Asymptotic winding of the geodesic flow on modular surfaces and continuous fractions », Ann. Sci. École Norm. Sup.26 (1993), p. 23–50. Zbl0784.60076MR1209912
- [19] —, « Note rectificative: “Asymptotic winding of the geodesic flow on modular surfaces and continuous fractions" », Ann. Sci. École Norm. Sup. (1996), p. 811–814. Zbl0878.60052
- [20] H. Hennion – « Sur un théorème spectral et son application aux noyaux Lipschitziens », Proc. Amer. Math. Soc.118 (1993), p. 637–634. Zbl0772.60049MR1129880
- [21] H. Hennion & L. Hervé – « Limit theorem for Markov chains and stochastic properties of dynamical systems by quasi-compactness », Lecture Notes in Math., vol. 1766. Zbl0983.60005
- [22] V. Kaïmanovitch – « Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds », Ann. Inst. Henri Poincaré 53 (1900), p. 361–393. Zbl0725.58026MR1096098
- [23] S. Lalley – « Closed geodesics in homology classes on surfaces of variable negative curvature », Duke Math. J.58 (1989), p. 795–821. Zbl0732.53035MR1016446
- [24] S. Le Borgne – « Principe d’invariance pour les flots diagonaux sur », Ann. Inst. Henri Poincaré38 (2002), p. 581–612. Zbl1009.60018MR1914940
- [25] Y. Le Jan – « The central Limit Theorem for the geodesic flow on non compact manifolds of constant negative curvature », Duke Math. J.74 (1994), p. 159–175. Zbl0809.58031MR1271468
- [26] B. Maskitt – Kleinian Groups, Springer-Verlag, Berlin, 1988. Zbl0627.30039MR959135
- [27] J.-P. Otal & M. Peigné – « Principe variationnel et groupes Kleiniens », To appear in Duke Math. J. Zbl1112.37019MR2097356
- [28] W. Parry & M. Pollicott – « Zeta functions and the periodic orbit stucture of hyperbolic dynamics », Astérisque (1990), p. 187–188. Zbl0726.58003MR1085356
- [29] S. J. Patterson – « The limit set of a Fuchsian group », Acta Math.136 (1976), p. 241–273. Zbl0336.30005MR450547
- [30] M. Peigné – « On the Patterson-Sullivan measure of some discrete groups of isometries », Israel J. Math.133 (2003), p. 77–88. Zbl1017.37022MR1968423
- [31] J. G. Ratcliffe – Foundations of Hyperbolic Geometry, Springer Verlag, New York, 1994. MR1299730
- [32] M. Ratner – « The Central Limit Theorem for geodesic flows on -manifolds of negative curvature », Israel J. Math.16 (1973), p. 181–197. Zbl0283.58010MR333121
- [33] C. Series – « The modular surface and continued fractions », J. London Math. Soc.31 (1985), p. 69–80. Zbl0545.30001MR810563
- [34] J. G. Sinai – « The Central Limit Theorem for geodesic flows on manifolds of constant negative curvature », Dokl. Akad. Nauk. SSSR1 (1960), p. 983–987. Zbl0129.31103MR125607
- [35] B. Stratmann & S. L. Velani – « The Patterson measure for geometrically finite groups with parabolic elements, new and old », Proc. Lond. Math. Soc.71 (1995), p. 197–220. Zbl0821.58026MR1327939
- [36] D. Sullivan – « The density at infinity of a discrete group of hyperbolic motions », Publ. Math. IHÉS50 (1979), p. 171–202. Zbl0439.30034MR556586
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.