Homologie des géodésiques fermées sur des variétés hyperboliques avec bouts cuspidaux
Annales scientifiques de l'École Normale Supérieure (2000)
- Volume: 33, Issue: 1, page 81-120
- ISSN: 0012-9593
Access Full Article
topHow to cite
topBabillot, Martine, and Peigné, Marc. "Homologie des géodésiques fermées sur des variétés hyperboliques avec bouts cuspidaux." Annales scientifiques de l'École Normale Supérieure 33.1 (2000): 81-120. <http://eudml.org/doc/82511>.
@article{Babillot2000,
author = {Babillot, Martine, Peigné, Marc},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {hyperbolic manifolds; cuspidal ends; complete Riemannian manifold; growth rate; number of closed geodesics; fixed homology class},
language = {fre},
number = {1},
pages = {81-120},
publisher = {Elsevier},
title = {Homologie des géodésiques fermées sur des variétés hyperboliques avec bouts cuspidaux},
url = {http://eudml.org/doc/82511},
volume = {33},
year = {2000},
}
TY - JOUR
AU - Babillot, Martine
AU - Peigné, Marc
TI - Homologie des géodésiques fermées sur des variétés hyperboliques avec bouts cuspidaux
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 1
SP - 81
EP - 120
LA - fre
KW - hyperbolic manifolds; cuspidal ends; complete Riemannian manifold; growth rate; number of closed geodesics; fixed homology class
UR - http://eudml.org/doc/82511
ER -
References
top- [1] T. AKAZA, 3/2-dimensional measure of singular sets of some Kleinian groups, J. Math. Soc. Japan 24 (1972) 448-464. Zbl0235.30020MR46 #9338
- [2] E. ARTIN, Ein mechanisches System mit quasiergodischen Bahnen, in : Collected Papers, Addison-Wesley, 1965, pp. 499-501.
- [3] T. ADACHI and T. SUNADA, Homology of closed geodesics in a negatively curved manifold, J. Differential Geom. 26 (1987) 81-99. Zbl0618.58028MR88g:58149
- [4] A. BROISE, F. DAL'BO and M. PEIGNÉ, Méthode des opérateurs de transfert : transformations dilatantes de l'intervalle et dénombrement de géodésiques fermées, Soc. Math. France, Astérisque 238, 1996. Zbl0988.37032
- [5] A.F. BEARDON, The exponent of convergence of Poincaré series, Proc. London Math. Soc. 3 (18) (1968) 461-483. Zbl0162.38801MR37 #2986
- [6] V. BALADI and G. KELLER, Zeta functions and transfer operators for piecewise monotone transformations, Comm. Math. Phys. 127 (1990) 459-477. Zbl0703.58048MR91b:58196
- [7] M. BABILLOT and F. LEDRAPPIER, Lalley's theorem on periodic orbits of hyperbolic flows, Ergodic Theory Dynamical Systems 18 (1998) 17-39. Zbl0915.58074MR99a:58128
- [8] R. BOWEN, The equidistribution of closed geodesics, Amer. J. Math. 94 (1972) 413-423. Zbl0249.53033MR47 #4291
- [9] R. BOWEN, Hausdorff dimension of quasi-circles, Publ. Math. IHES 50 (1979). Zbl0439.30032MR81g:57023
- [10] M. BABILLOT and M. PEIGNÉ, Closed geodesics in homology classes on hyperbolic manifolds with cusps, C. R. Acad. Sci. Paris Série I 324 (1997) 901-906. Zbl0884.58078MR99a:58121
- [11] L. BREIMAN, Probability, Addison-Wesley, 1968. Zbl0174.48801MR37 #4841
- [12] X. BRESSAUD, Opérateurs de transfert sur le décalage à alphabet infini et applications, Thèse de l'Université Paris 6, 1996.
- [13] R. BOWEN and C. SERIES, Markov maps associated with Fuchsian groups, Publ. Math. IHES 50 (1979) 153-170. Zbl0439.30033MR81b:58026
- [14] W. DOEBLIN and R. FORTET, Sur les chaines à liaison complètes, Bull. Soc. Math. France 65 (1937) 132-148. Zbl0018.03303JFM63.1077.05
- [15] P.G. DOYLE, On the bass note of a Schottky group, Acta Math. 160 (1988) 249-284. Zbl0649.30036MR90b:30053
- [16] F. DAL'BO and M. PEIGNÉ, Groupes du ping-pong et géodésiques fermées en courbure -1, Ann. Inst. Fourier 46 (3) (1996) 755-799. Zbl0853.53032MR97h:58126
- [17] N. ENRIQUEZ, J. FRANCHI and Y. LE JAN, Stable windings for geodesics under Patterson-Sullivan measure, Prépublication 431 du Laboratoire de Probabilités de l'Université Paris VI, 1998. Zbl0932.37013
- [18] N. ENRIQUEZ and Y. LE JAN, Statistic of the winding of geodesics on a Riemann surface with finite area and constant negative curvature, Rev. Mat. Iber. 13 (1997) 377-401. Zbl0907.58054MR99f:58221
- [19] C. EPSTEIN, Asymptotics for closed geodesics in a homology class-the finite volume case, Duke Math. J. 55 (1987) 717-757. Zbl0648.58041MR89c:58098
- [20] J. FRANCHI, Asymptotic singular homology of a complete hyperbolic 3-manifold of finite volume, Proc. London Math. Soc. 79 (1999) 451-480. Zbl1056.58012MR2001a:58051
- [21] Y. GUIVARC'H and Y. LE JAN, Asymptotic winding of the geodesic flow on modular surfaces and continued fractions, Ann. Sci. ENS 26 (1993) 23-50. Zbl0784.60076MR94a:58157
- [22] L. GUILLOPÉ, Fonctions Zêta de Selberg et surfaces de géométrie finie, Adv. Studies in Pure Math. 21 (1992) 33-72. Zbl0794.58044MR94d:11032
- [23] Y. GUIVARC'H and J. HARDY, Théorèmes limites pour une classe de chaînes de Markov, et applications aux difféomorphismes d'Anosov, Ann. IHP 24 73-98. Zbl0649.60041MR89m:60080
- [24] N.T.A. HAYDN, Meromorphic extensions of the Zeta function for Axiom A flows, Ergodic Theory Dynamical Systems 10 (1990) 347-360. Zbl0694.58035MR91g:58219
- [25] D. HEIJHAL, The Selberg trace formula and the Riemann Zeta function, Duke Math. J. 43 (1976) 441-482. Zbl0346.10010MR54 #2591
- [26] H. HENNION, Sur un théorème spectral et son application aux noyaux Lipschitziens, Proc. AMS 118 (1993) 637-634. Zbl0772.60049MR93g:60141
- [27] H. HUBER, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen (I), Math. Ann. 138 (1959) 1-26 ; (II), Math. Ann. 142 (1961) 385-398 ; (III), Math. Ann. 143 (1961) 463-464. Zbl0101.05702MR27 #4923
- [28] S. ISOLA, On the rate of convergence to equilibrium of countable ergodic Markov chains, Prépublication, Università degli Studi di Bologna, 1997.
- [29] S. ISOLA, Dynamical Zeta functions and correlation functions for intermittent interval maps, Prépublication, Università degli Studi di Bologna, 1997.
- [30] S. ISOLA, Renewal sequences and intermittency, Prépublication, Università degli Studi di Bologna, 1997.
- [31] A. KATSUDA and T. SUNADA, Closed orbits in homology classes, Publ. Math. IHES 71 (1990) 5-32. Zbl0728.58026MR92m:58102
- [32] S. LALLEY, Renewal theorems in symbolic dynamics with applications to geodesic flows, non euclidean tesselations and their fractal limits, Acta Math. 163 (1989) 1-55. Zbl0701.58021MR91c:58112
- [33] S. LALLEY, Closed geodesics in homology classes on surfaces of variable negative curvature, Duke Math. J. 58 (1989) 795-821. Zbl0732.53035MR91a:58143
- [34] S. LALLEY, Probabilistic methods in certain counting problems in ergodic theory, in : T. Bedford, M. Keane and C. Series, eds., Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford University Press, Oxford, 1991. Zbl0756.58032MR1130178
- [35] B. MASKITT, Kleinian Groups, Springer, Berlin, 1988. Zbl0627.30039
- [36] G.A. MARGULIS, Applications of ergodic theory for the investigation of manifolds of negative curvature, Func. Anal. Appl. 3 (1969) 335-336. Zbl0207.20305MR41 #2582
- [37] C. MCMULLEN, Hausdorff dimension and conformal dynamics, I : Kleinian Groups and strong limits, à paraître J. Diff. Geom. III : Computation of dimension, Amer. J. Math. 120 (1998) 691-721. Zbl0953.30026MR2000d:37055
- [38] R. MIATELLO and N.R. WALLACH, The resolvant of the Laplacian on locally symmetric spaces, J. Differential Geom. 36 (1992) 663-698. Zbl0766.53044MR93i:58160
- [39] W. PARRY, An analogue of the prime number theorem for closed orbits of shifts of finite type and their suspensions, Israel J. Math. 45 (1983) 573-591. Zbl0552.28020MR85c:58089
- [40] S.J. PATTERSON, The limit set of a Fuchsian group, Acta Math. 136 (1976) 241-273. Zbl0336.30005MR56 #8841
- [41] M. POLLICOTT, Homology and closed geodesics in a compact negatively curved surface, Amer. J. Math. 113 (1991) 379-385. Zbl0728.53031MR92e:58158
- [42] W. PARRY and M. POLLICOTT, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188, Soc. Math. France, 1990. Zbl0726.58003MR92f:58141
- [43] R. PHILLIPS and P. SARNAK, Geodesics in homology classes, Duke Math. J. 55 (1987) 287-297. Zbl0642.53050MR88g:58151
- [44] T. PRELLBERG and J. SLAWNY, Maps of intervals with indifferent fixed points : thermodynamic formalism and phase transitions, J. Stat. Phys. 66 (1992) 503-514. Zbl0892.58024MR93g:58085
- [45] J.G. RATCLIFFE, Foundations of Hyperbolic Geometry, Springer, New York, 1994. Zbl0809.51001
- [46] T. ROBLIN, Sur la théorie ergodique des groupes discrets en géométrie hyperbolique, Thèse de doctorat de l'Université Paris XI, 1999.
- [47] J. ROUSSEAU-EGELE, Un théorème de la limite locale pour une classe de fonctions dilatantes et monotones par morceaux, Ann. Probab. 11 (1983) 772-788. Zbl0518.60033MR84m:60032
- [48] W. RUDIN, Analyse Réelle et Complexe, Masson, Paris, 1975. Zbl0333.28001MR52 #10292
- [49] H.H. RUGH, Intermittency and regularized Fredholm determinants, Invent. Math. 135 (1999) 1-24. Zbl0988.37027MR2000c:37025
- [50] A. SELBERG, Harmonic analysis and discontinuous groups in weakly symmetric spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956) 47-87. Zbl0072.08201MR19,531g
- [51] C. SERIES, The modular surface and continued fractions, J. London Math. Soc. 31 (1985) 69-80. Zbl0545.30001MR87c:58094
- [52] R. SHARP, Closed orbits in homology classes for Anosov flows, Ergodic Theory Dynamical Systems 13 (1993) 387-408. Zbl0783.58059MR94g:58169
- [53] F. SPITZER, Principles of Random Walks, Van Nostrand, Princeton, 1964. Zbl0119.34304MR30 #1521
- [54] D. SULLIVAN, The density at infinity of a discrete group of hyperbolic isometries, Publ. Math. IHES 50 (1979) 171-209. Zbl0439.30034MR81b:58031
- [55] D. SULLIVAN, Entropy, Hausdorff measure old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984) 259-277. Zbl0566.58022MR86c:58093
- [56] L.S. YOUNG, Recurrence times and rates of mixing, à paraître, Israel J. Math. (1999). Zbl0983.37005MR2001j:37062
- [57] S. ZELDITCH, Trace formula for compact Γ2(R) and the equidistribution theory of closed geodesics, Duke Math. J. 59 (1989) 27-81. Zbl0686.10024MR91d:11056
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.