Involutivity of truncated microsupports

Masaki Kashiwara; Térésa Monteiro Fernandes; Pierre Schapira

Bulletin de la Société Mathématique de France (2003)

  • Volume: 131, Issue: 2, page 259-266
  • ISSN: 0037-9484

Abstract

top
Using a result of J.-M. Bony, we prove the weak involutivity of truncated microsupports. More precisely, given a sheaf F on a real manifold and k , if two functions vanish on SS k ( F ) , then so does their Poisson bracket.

How to cite

top

Kashiwara, Masaki, Monteiro Fernandes, Térésa, and Schapira, Pierre. "Involutivity of truncated microsupports." Bulletin de la Société Mathématique de France 131.2 (2003): 259-266. <http://eudml.org/doc/272436>.

@article{Kashiwara2003,
abstract = {Using a result of J.-M. Bony, we prove the weak involutivity of truncated microsupports. More precisely, given a sheaf $F$ on a real manifold and $k\in \mathbb \{Z\}$, if two functions vanish on $\operatorname\{SS\}_k(F)$, then so does their Poisson bracket.},
author = {Kashiwara, Masaki, Monteiro Fernandes, Térésa, Schapira, Pierre},
journal = {Bulletin de la Société Mathématique de France},
keywords = {sheaves; microsupport; involutivity},
language = {eng},
number = {2},
pages = {259-266},
publisher = {Société mathématique de France},
title = {Involutivity of truncated microsupports},
url = {http://eudml.org/doc/272436},
volume = {131},
year = {2003},
}

TY - JOUR
AU - Kashiwara, Masaki
AU - Monteiro Fernandes, Térésa
AU - Schapira, Pierre
TI - Involutivity of truncated microsupports
JO - Bulletin de la Société Mathématique de France
PY - 2003
PB - Société mathématique de France
VL - 131
IS - 2
SP - 259
EP - 266
AB - Using a result of J.-M. Bony, we prove the weak involutivity of truncated microsupports. More precisely, given a sheaf $F$ on a real manifold and $k\in \mathbb {Z}$, if two functions vanish on $\operatorname{SS}_k(F)$, then so does their Poisson bracket.
LA - eng
KW - sheaves; microsupport; involutivity
UR - http://eudml.org/doc/272436
ER -

References

top
  1. [1] J.-M. Bony – « Quasi-analycité et unicité du problème de Cauchy pour les solutions d’équations aux dérivées partielles », Équations aux dérivées partielles et analyse fonctionnelle, Séminaire Goulaouic-Schwartz, École Polytechnique Paris, 1971, Exp. 10. Zbl0238.35017
  2. [2] M. Kashiwara, T. Monteiro Fernandes & P. Schapira – « Truncated microsupport and holomorphic solutions of D -modules », ArXiv math.AG/0203091, Annales Sci. École Normale Sup., to appear. Zbl1044.32003MR2013927
  3. [3] M. Kashiwara & P. Schapira – Sheaves on manifolds, Grundlehren der Math. Wiss., vol. 292, Springer Verlag, 1990. Zbl0709.18001MR1074006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.