Pointed k -surfaces

Graham Smith

Bulletin de la Société Mathématique de France (2006)

  • Volume: 134, Issue: 4, page 509-557
  • ISSN: 0037-9484

Abstract

top
Let S be a Riemann surface. Let 3 be the 3 -dimensional hyperbolic space and let 3 be its ideal boundary. In our context, a Plateau problem is a locally holomorphic mapping ϕ : S 3 = ^ . If i : S 3 is a convex immersion, and if N is its exterior normal vector field, we define the Gauss lifting, ı ^ , of i by ı ^ = N . Let n : U 3 3 be the Gauss-Minkowski mapping. A solution to the Plateau problem ( S , ϕ ) is a convex immersion i of constant Gaussian curvature equal to k ( 0 , 1 ) such that the Gauss lifting ( S , ı ^ ) is complete and n ı ^ = ϕ . In this paper, we show that, if S is a compact Riemann surface, if 𝒫 is a discrete subset of S and if ϕ : S ^ is a ramified covering, then, for all p 0 𝒫 , the solution ( S 𝒫 , i ) to the Plateau problem ( S 𝒫 , ϕ ) converges asymptotically as one tends to p 0 to a cylinder wrapping a finite number, k , of times about a geodesic terminating at ϕ ( p 0 ) . Moreover, k is equal to the order of ramification of ϕ at p 0 . We also obtain a converse of this result, thus completely describing complete, constant Gaussian curvature, immersed hypersurfaces in 3 with cylindrical ends.

How to cite

top

Smith, Graham. "Pointed $k$-surfaces." Bulletin de la Société Mathématique de France 134.4 (2006): 509-557. <http://eudml.org/doc/272442>.

@article{Smith2006,
abstract = {Let $S$ be a Riemann surface. Let $\mathbb \{H\}^3$ be the $3$-dimensional hyperbolic space and let $\partial _\infty \mathbb \{H\}^3$ be its ideal boundary. In our context, a Plateau problem is a locally holomorphic mapping $\varphi :S\rightarrow \partial _\infty \mathbb \{H\}^3=\widehat\{\mathbb \{C\}\}$. If $i:S\rightarrow \mathbb \{H\}^3$ is a convex immersion, and if $N$ is its exterior normal vector field, we define the Gauss lifting, $\hat\{\imath \}$, of $i$ by $\hat\{\imath \}=N$. Let $\overrightarrow\{n\}:U\mathbb \{H\}^3\rightarrow \partial _\infty \mathbb \{H\}^3$ be the Gauss-Minkowski mapping. A solution to the Plateau problem $(S,\varphi )$ is a convex immersion $i$ of constant Gaussian curvature equal to $k\in (0,1)$ such that the Gauss lifting $(S,\hat\{\imath \})$ is complete and $\overrightarrow\{n\}\circ \hat\{\imath \}=\varphi $. In this paper, we show that, if $S$ is a compact Riemann surface, if $\mathcal \{P\}$ is a discrete subset of $S$ and if $\varphi :S\rightarrow \widehat\{\mathbb \{C\}\}$ is a ramified covering, then, for all $p_0\in \mathcal \{P\}$, the solution $(S\setminus \mathcal \{P\},i)$ to the Plateau problem $(S\setminus \mathcal \{P\},\varphi )$ converges asymptotically as one tends to $p_0$ to a cylinder wrapping a finite number, $k$, of times about a geodesic terminating at $\varphi (p_0)$. Moreover, $k$ is equal to the order of ramification of $\varphi $ at $p_0$. We also obtain a converse of this result, thus completely describing complete, constant Gaussian curvature, immersed hypersurfaces in $\mathbb \{H\}^3$ with cylindrical ends.},
author = {Smith, Graham},
journal = {Bulletin de la Société Mathématique de France},
keywords = {immersed hypersurfaces; pseudo-holomorphic curves; contact geometry; plateau problem; gaussian curvature; hyperbolic space; moduli spaces; teichmüller theory},
language = {eng},
number = {4},
pages = {509-557},
publisher = {Société mathématique de France},
title = {Pointed $k$-surfaces},
url = {http://eudml.org/doc/272442},
volume = {134},
year = {2006},
}

TY - JOUR
AU - Smith, Graham
TI - Pointed $k$-surfaces
JO - Bulletin de la Société Mathématique de France
PY - 2006
PB - Société mathématique de France
VL - 134
IS - 4
SP - 509
EP - 557
AB - Let $S$ be a Riemann surface. Let $\mathbb {H}^3$ be the $3$-dimensional hyperbolic space and let $\partial _\infty \mathbb {H}^3$ be its ideal boundary. In our context, a Plateau problem is a locally holomorphic mapping $\varphi :S\rightarrow \partial _\infty \mathbb {H}^3=\widehat{\mathbb {C}}$. If $i:S\rightarrow \mathbb {H}^3$ is a convex immersion, and if $N$ is its exterior normal vector field, we define the Gauss lifting, $\hat{\imath }$, of $i$ by $\hat{\imath }=N$. Let $\overrightarrow{n}:U\mathbb {H}^3\rightarrow \partial _\infty \mathbb {H}^3$ be the Gauss-Minkowski mapping. A solution to the Plateau problem $(S,\varphi )$ is a convex immersion $i$ of constant Gaussian curvature equal to $k\in (0,1)$ such that the Gauss lifting $(S,\hat{\imath })$ is complete and $\overrightarrow{n}\circ \hat{\imath }=\varphi $. In this paper, we show that, if $S$ is a compact Riemann surface, if $\mathcal {P}$ is a discrete subset of $S$ and if $\varphi :S\rightarrow \widehat{\mathbb {C}}$ is a ramified covering, then, for all $p_0\in \mathcal {P}$, the solution $(S\setminus \mathcal {P},i)$ to the Plateau problem $(S\setminus \mathcal {P},\varphi )$ converges asymptotically as one tends to $p_0$ to a cylinder wrapping a finite number, $k$, of times about a geodesic terminating at $\varphi (p_0)$. Moreover, $k$ is equal to the order of ramification of $\varphi $ at $p_0$. We also obtain a converse of this result, thus completely describing complete, constant Gaussian curvature, immersed hypersurfaces in $\mathbb {H}^3$ with cylindrical ends.
LA - eng
KW - immersed hypersurfaces; pseudo-holomorphic curves; contact geometry; plateau problem; gaussian curvature; hyperbolic space; moduli spaces; teichmüller theory
UR - http://eudml.org/doc/272442
ER -

References

top
  1. [1] W. Ballman, M. Gromov & V. Schroeder – Manifolds of nonpositive curvature, Progress in Math., vol. 61, Birkhäuser, Boston, 1985. Zbl0591.53001MR823981
  2. [2] M. Gromov – « Foliated Plateau problem I. Minimal varieties », Geom. Funct. Anal.1 (1991), p. 14–79. Zbl0768.53011MR1091610
  3. [3] F. Labourie – « Problèmes de Monge-Ampère, courbes holomorphes et laminations », Geom. Funct. Anal.7 (1997), p. 496–534. Zbl0885.32013MR1466336
  4. [4] —, « Un lemme de Morse pour les surfaces convexes », Invent. Math.141 (2000), p. 239–297. Zbl0981.52002MR1775215
  5. [5] O. Lehto & K. I. Virtanen – Quasiconformal mappings in the plane, Grundlehren Math. Wiss., vol. 126, Springer-Verlag, New York-Heidelberg, 1973. Zbl0267.30016MR344463
  6. [6] M. P. Muller – « Gromov’s Schwarz lemma as an estimate of the gradient for holomorphic curves », Holomorphic curves in symplectic geometry, Progress in Math., vol. 117, Birkhäuser, Basel, 1994, p. 217–231. MR1274931
  7. [7] H. Rosenberg & J. Spruck – « On the existence of convex hyperspheres of constant Gauss curvature in hyperbolic space », J. Diff. Geom.40 (1994), p. 379–409. Zbl0823.53047MR1293658
  8. [8] G. Smith – « Problèmes elliptiques pour des sous-variétés riemanniennes », Thèse, Orsay, 2004. 
  9. [9] —, « Hyperbolic Plateau problems », http://arxiv.org/abs/math/0506231v1, 2005. 
  10. [10] —, « Positive special Legendrian structures and Weingarten problems », http://arxiv.org/abs/math/0506230v1, 2005. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.