Dual Blobs and Plancherel Formulas

Ju-Lee Kim

Bulletin de la Société Mathématique de France (2004)

  • Volume: 132, Issue: 1, page 55-80
  • ISSN: 0037-9484

Abstract

top
Let k be a p -adic field. Let G be the group of k -rational points of a connected reductive group 𝖦 defined over k , and let 𝔤 be its Lie algebra. Under certain hypotheses on 𝖦 and k , wequantifythe tempered dual G ^ of G via the Plancherel formula on 𝔤 , using some character expansions. This involves matching spectral decomposition factors of the Plancherel formulas on 𝔤 and G . As a consequence, we prove that any tempered representation contains a good minimal 𝖪 -type; we extend this result to irreducible admissible representations.

How to cite

top

Kim, Ju-Lee. "Dual Blobs and Plancherel Formulas." Bulletin de la Société Mathématique de France 132.1 (2004): 55-80. <http://eudml.org/doc/272457>.

@article{Kim2004,
abstract = {Let $k$ be a $p$-adic field. Let $G$ be the group of $k$-rational points of a connected reductive group $\mathsf \{G\}$ defined over $k$, and let $\mathfrak \{g\}$ be its Lie algebra. Under certain hypotheses on $\mathsf \{G\}$ and $k$, wequantifythe tempered dual $\{\widehat\{G\}\}$ of $G$ via the Plancherel formula on $\mathfrak \{g\}$, using some character expansions. This involves matching spectral decomposition factors of the Plancherel formulas on $\mathfrak \{g\}$ and $G$. As a consequence, we prove that any tempered representation contains a good minimal $\mathsf \{K\}$-type; we extend this result to irreducible admissible representations.},
author = {Kim, Ju-Lee},
journal = {Bulletin de la Société Mathématique de France},
keywords = {representations; $p$-adic groups; Plancherel formula; character expansions},
language = {eng},
number = {1},
pages = {55-80},
publisher = {Société mathématique de France},
title = {Dual Blobs and Plancherel Formulas},
url = {http://eudml.org/doc/272457},
volume = {132},
year = {2004},
}

TY - JOUR
AU - Kim, Ju-Lee
TI - Dual Blobs and Plancherel Formulas
JO - Bulletin de la Société Mathématique de France
PY - 2004
PB - Société mathématique de France
VL - 132
IS - 1
SP - 55
EP - 80
AB - Let $k$ be a $p$-adic field. Let $G$ be the group of $k$-rational points of a connected reductive group $\mathsf {G}$ defined over $k$, and let $\mathfrak {g}$ be its Lie algebra. Under certain hypotheses on $\mathsf {G}$ and $k$, wequantifythe tempered dual ${\widehat{G}}$ of $G$ via the Plancherel formula on $\mathfrak {g}$, using some character expansions. This involves matching spectral decomposition factors of the Plancherel formulas on $\mathfrak {g}$ and $G$. As a consequence, we prove that any tempered representation contains a good minimal $\mathsf {K}$-type; we extend this result to irreducible admissible representations.
LA - eng
KW - representations; $p$-adic groups; Plancherel formula; character expansions
UR - http://eudml.org/doc/272457
ER -

References

top
  1. [1] J. Adler – « Refined anisotropic k -types and supercuspidal representations », Pacific J. Math.185 (1998), p. 1–32. Zbl0924.22015MR1653184
  2. [2] J. Adler & S. DeBacker – « Some applications of Bruhat-Tits theory to harmonic analysis on the Lie algebra of a reductive p -adic group », Michigan J. Math. 50 (2002), no. 2, p. 263–286. Zbl1018.22013MR1914065
  3. [3] J. Adler & A. Roche – « An intertwining result for p -adic groups », Canad. J. Math. 52 (2000), no. 3, p. 449–467. Zbl1160.22304MR1758228
  4. [4] D. Barbasch & A. Moy – « Local character expansions », Ann. Sci. École Norm. Sup. 30 (1997), no. 5, p. 553–567. Zbl0885.22021MR1474804
  5. [5] S. DeBacker – « Homogeneity results for invariant distributions of a reductive p -adic group », Ann. Sci. École Norm. Sup.35 (2002), p. 391–422. Zbl0999.22013MR1914003
  6. [6] —, « Parameterizing nilpotent orbits via Bruhat-Tits theory », Ann. of Math.156 (2002), p. 295–331. Zbl1015.20033MR1935848
  7. [7] J. Dixmier – Les C * -algèbres et leurs représentations, Éditions Jacques Gabay, Paris, 1996. Zbl0174.18601
  8. [8] Harish-Chandra –« The Plancherel formula for reductive p -adic groups », Collected Papers, vol. 4, Springer-Verlag, Berlin, 1976. 
  9. [9] —, Admissible invariant distributions on reductive p -adic groups, University Lecture Series, vol. 16, Amer. Math. Soc., Providence, RI, 1999, Preface and notes by Stephen DeBacker and Paul J.Sally, Jr. Zbl0928.22017MR1702257
  10. [10] R. Howe – « Kirillov theory for compact p -adic groups », Pacific J. Math.73 (1977), p. 365–381. Zbl0385.22007MR579176
  11. [11] —, « Some qualitative results on the representation theory or Gl n over a p -adic field », Pacific J. Math.73 (1977), p. 479–538. Zbl0385.22009MR492088
  12. [12] J. Kim – « Hecke algebras of classical groups over p -adic fields and supercuspidal representations », Amer. J. Math.121 (1999), p. 967–1029. Zbl0933.22024MR1713299
  13. [13] J. Kim & F. Murnaghan – « Character expansions and unrefined minimal 𝖪 -types », Preprint, 2002. Zbl1037.22035
  14. [14] A. Moy & G. Prasad – « Unrefined minimal K -types for p -adic groups », Invent. Math.116 (1994), p. 393–408. Zbl0804.22008MR1253198
  15. [15] —, « Jacquet functors and unrefined minimal K -types », Comment. Math. Helv.71 (1996), p. 98–121. Zbl0860.22006MR1371680
  16. [16] G. Prasad – « Galois fixed points in the Bruhat-Tits buildings of a reductive group », Bull. Soc. Math. France129 (2001), p. 169–174. Zbl0992.20032MR1871292
  17. [17] G. Rousseau – « Immeubles des groupes réductifs sur les corps locaux », Thèse, Paris XI, 1977. Zbl0412.22006
  18. [18] J.-L. Waldspurger – « Homogénéité de certaines distributions sur les groupes p -adiques », Inst. Hautes Études Sci. Publ. Math.81 (1995), p. 25–72. Zbl0841.22009MR1361755
  19. [19] —, « La formule de Plancherel pour les groupes p -adiques d’après Harish-Chandra », J. Inst. Math. Jussieu 2 (2003), no. 2, p. 235–333. Zbl1029.22016MR1989693
  20. [20] J. Yu – « Construction of tame supercuspidal representations », J. Amer. Math. Soc. 14 (2001), no. 3, p. 579–622. Zbl0971.22012MR1824988

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.