Homogeneity results for invariant distributions of a reductive p-adic group
Annales scientifiques de l'École Normale Supérieure (2002)
- Volume: 35, Issue: 3, page 391-422
- ISSN: 0012-9593
Access Full Article
topHow to cite
topDeBacker, Stephen. "Homogeneity results for invariant distributions of a reductive p-adic group." Annales scientifiques de l'École Normale Supérieure 35.3 (2002): 391-422. <http://eudml.org/doc/82575>.
@article{DeBacker2002,
author = {DeBacker, Stephen},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {-adic groups; homogeneity; local character expansion; Hales-Moy-Prasad conjecture},
language = {eng},
number = {3},
pages = {391-422},
publisher = {Elsevier},
title = {Homogeneity results for invariant distributions of a reductive p-adic group},
url = {http://eudml.org/doc/82575},
volume = {35},
year = {2002},
}
TY - JOUR
AU - DeBacker, Stephen
TI - Homogeneity results for invariant distributions of a reductive p-adic group
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 3
SP - 391
EP - 422
LA - eng
KW - -adic groups; homogeneity; local character expansion; Hales-Moy-Prasad conjecture
UR - http://eudml.org/doc/82575
ER -
References
top- [1] Adler J.D., Refined anisotropic K-types and supercuspidal representations, Pacific J. Math.185 (1998) 1-32. Zbl0924.22015MR1653184
- [2] Adler J., DeBacker S., Some applications of Bruhat–Tits theory to harmonic analysis on the Lie algebra of a reductive p-adic group, Mich. Math. J., to appear. Zbl1018.22013MR1914064
- [3] Adler J., Roche A., An intertwining result for p-adic groups, Canad. J. Math.52 (3) (2000) 449-467. Zbl1160.22304MR1758228
- [4] Barbasch D., Moy A., A new proof of the Howe conjecture, J. Amer. Math. Soc.13 (3) (2000) 639-650, (electronic). Zbl0976.22008MR1758757
- [5] Barbasch D., Moy A., Local character expansions, Ann. Sci. École Norm. Sup. (4)30 (5) (1997) 553-567. Zbl0885.22021MR1474804
- [6] Carter R., Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, Wiley Classics Library, John Wiley & Sons, Chichester, 1993, Reprint of the 1985 original. Zbl0567.20023MR1266626
- [7] Clozel L., Characters of non-connected, reductive p-adic groups, Canad. J. Math.39 (1987) 149-167. Zbl0629.22008MR889110
- [8] DeBacker S., The Hales–Moy–Prasad Conjecture for Sp4, in: Sally P.J. (Ed.), Analyse harmonique sur le groupe SP4 (CIRM Luminy, 1998), University of Chicago Lecture Notes in Representation Theory, 1999.
- [9] DeBacker S., Homogeneity of certain invariant distributions on the Lie algebra of p-adic GLn, Compositio Math.124 (1) (2000) 11-16. Zbl0964.22015MR1797651
- [10] DeBacker S., On supercuspidal characters of GLℓ, ℓ a prime, Ph.D. thesis, The University of Chicago, 1997.
- [11] DeBacker S., Parametrizing nilpotent orbits via Bruhat–Tits theory, Ann. of Math., to appear. Zbl1015.20033MR1935848
- [12] DeBacker S., Some applications of Bruhat–Tits theory to harmonic analysis on a reductive p-adic group, Mich. Math. J., to appear. Zbl1018.22014MR1914064
- [13] Harish-Chandra, Admissible Invariant Distributions on Reductive p-Adic Groups, University Lecture Series, 16, American Mathematical Society, Providence, RI, 1999, Preface and notes by Stephen DeBacker and Paul J. Sally, Jr. Zbl0928.22017MR1702257
- [14] Harish-Chandra, A submersion principle and its applications, in: Geometry and Analysis – Papers Dedicated to the Memory of V.K. Patodi, Springer-Verlag, 1981, pp. 95-102. Zbl0485.22023MR653948
- [15] Howe R., The Fourier transform and germs of characters (case of Gln over a p-adic field), Math. Ann.208 (1974) 305-322. Zbl0266.43007MR342645
- [16] Huntsinger R., Some aspects of invariant harmonic analysis on the Lie algebra of a reductive p-adic group, Ph.D. thesis, The University of Chicago, 1997.
- [17] Mœglin C., Waldspurger J.-L., Modèles de Whittaker dégénérés pour des groupes p-adiques, Math. Z.196 (3) (1987) 427-452. Zbl0612.22008
- [18] Moy A., personal communication.
- [19] Moy A., Prasad G., Jacquet functors and unrefined minimal K-types, Comment. Math. Helvetici71 (1996) 98-121. Zbl0860.22006MR1371680
- [20] Moy A., Refined cosets in the Lie algebra of a reductive p-adic group, preprint, 1999.
- [21] Moy A., Unrefined minimal K-types for p-adic groups, Inv. Math.116 (1994) 393-408. Zbl0804.22008MR1253198
- [22] Ranga Rao R., Orbital integrals in reductive groups, Ann. of Math.96 (1972) 505-510. Zbl0302.43002MR320232
- [23] Sally P.J., Shalika J., Characters of the discrete series of representations of SL(2) over a local field, Proc. Nat. Acad. Sci. USA61 (1968) 1231-1237. Zbl0198.18203MR237713
- [24] Tits J., Reductive groups over p-adic fields, in: Borel A., Casselman W. (Eds.), Automorphic Forms, Representations, and L-Functions, Proc. Symp. Pure Math., 33, American Mathematical Society, Providence, RI, 1979, pp. 29-69. Zbl0415.20035MR546588
- [25] Waldspurger J.-L., Homogénéité de certaines distributions sur les groupes p-adiques, Inst. Hautes Études Sci. Publ. Math.81 (1995) 25-72. Zbl0841.22009MR1361755
- [26] Waldspurger J.-L., Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés p-adiques, Astérisque269 (2001). Zbl0965.22012MR1817880
- [27] Waldspurger J.-L., Quelques questions sur les intégrales orbitales unipotentes et les algèbres de Hecke, Bull. Soc. Math. France124 (1) (1996) 1-34. Zbl0876.22013MR1395005
- [28] Waldspurger J.-L., Quelques résultats de finitude concernant les distributions invariantes sur les algèbres de Lie p-adiques, preprint, 1993.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.