Homogeneity results for invariant distributions of a reductive p-adic group

Stephen DeBacker

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 3, page 391-422
  • ISSN: 0012-9593

How to cite

top

DeBacker, Stephen. "Homogeneity results for invariant distributions of a reductive p-adic group." Annales scientifiques de l'École Normale Supérieure 35.3 (2002): 391-422. <http://eudml.org/doc/82575>.

@article{DeBacker2002,
author = {DeBacker, Stephen},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {-adic groups; homogeneity; local character expansion; Hales-Moy-Prasad conjecture},
language = {eng},
number = {3},
pages = {391-422},
publisher = {Elsevier},
title = {Homogeneity results for invariant distributions of a reductive p-adic group},
url = {http://eudml.org/doc/82575},
volume = {35},
year = {2002},
}

TY - JOUR
AU - DeBacker, Stephen
TI - Homogeneity results for invariant distributions of a reductive p-adic group
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 3
SP - 391
EP - 422
LA - eng
KW - -adic groups; homogeneity; local character expansion; Hales-Moy-Prasad conjecture
UR - http://eudml.org/doc/82575
ER -

References

top
  1. [1] Adler J.D., Refined anisotropic K-types and supercuspidal representations, Pacific J. Math.185 (1998) 1-32. Zbl0924.22015MR1653184
  2. [2] Adler J., DeBacker S., Some applications of Bruhat–Tits theory to harmonic analysis on the Lie algebra of a reductive p-adic group, Mich. Math. J., to appear. Zbl1018.22013MR1914064
  3. [3] Adler J., Roche A., An intertwining result for p-adic groups, Canad. J. Math.52 (3) (2000) 449-467. Zbl1160.22304MR1758228
  4. [4] Barbasch D., Moy A., A new proof of the Howe conjecture, J. Amer. Math. Soc.13 (3) (2000) 639-650, (electronic). Zbl0976.22008MR1758757
  5. [5] Barbasch D., Moy A., Local character expansions, Ann. Sci. École Norm. Sup. (4)30 (5) (1997) 553-567. Zbl0885.22021MR1474804
  6. [6] Carter R., Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, Wiley Classics Library, John Wiley & Sons, Chichester, 1993, Reprint of the 1985 original. Zbl0567.20023MR1266626
  7. [7] Clozel L., Characters of non-connected, reductive p-adic groups, Canad. J. Math.39 (1987) 149-167. Zbl0629.22008MR889110
  8. [8] DeBacker S., The Hales–Moy–Prasad Conjecture for Sp4, in: Sally P.J. (Ed.), Analyse harmonique sur le groupe SP4 (CIRM Luminy, 1998), University of Chicago Lecture Notes in Representation Theory, 1999. 
  9. [9] DeBacker S., Homogeneity of certain invariant distributions on the Lie algebra of p-adic GLn, Compositio Math.124 (1) (2000) 11-16. Zbl0964.22015MR1797651
  10. [10] DeBacker S., On supercuspidal characters of GLℓ, ℓ a prime, Ph.D. thesis, The University of Chicago, 1997. 
  11. [11] DeBacker S., Parametrizing nilpotent orbits via Bruhat–Tits theory, Ann. of Math., to appear. Zbl1015.20033MR1935848
  12. [12] DeBacker S., Some applications of Bruhat–Tits theory to harmonic analysis on a reductive p-adic group, Mich. Math. J., to appear. Zbl1018.22014MR1914064
  13. [13] Harish-Chandra, Admissible Invariant Distributions on Reductive p-Adic Groups, University Lecture Series, 16, American Mathematical Society, Providence, RI, 1999, Preface and notes by Stephen DeBacker and Paul J. Sally, Jr. Zbl0928.22017MR1702257
  14. [14] Harish-Chandra, A submersion principle and its applications, in: Geometry and Analysis – Papers Dedicated to the Memory of V.K. Patodi, Springer-Verlag, 1981, pp. 95-102. Zbl0485.22023MR653948
  15. [15] Howe R., The Fourier transform and germs of characters (case of Gln over a p-adic field), Math. Ann.208 (1974) 305-322. Zbl0266.43007MR342645
  16. [16] Huntsinger R., Some aspects of invariant harmonic analysis on the Lie algebra of a reductive p-adic group, Ph.D. thesis, The University of Chicago, 1997. 
  17. [17] Mœglin C., Waldspurger J.-L., Modèles de Whittaker dégénérés pour des groupes p-adiques, Math. Z.196 (3) (1987) 427-452. Zbl0612.22008
  18. [18] Moy A., personal communication. 
  19. [19] Moy A., Prasad G., Jacquet functors and unrefined minimal K-types, Comment. Math. Helvetici71 (1996) 98-121. Zbl0860.22006MR1371680
  20. [20] Moy A., Refined cosets in the Lie algebra of a reductive p-adic group, preprint, 1999. 
  21. [21] Moy A., Unrefined minimal K-types for p-adic groups, Inv. Math.116 (1994) 393-408. Zbl0804.22008MR1253198
  22. [22] Ranga Rao R., Orbital integrals in reductive groups, Ann. of Math.96 (1972) 505-510. Zbl0302.43002MR320232
  23. [23] Sally P.J., Shalika J., Characters of the discrete series of representations of SL(2) over a local field, Proc. Nat. Acad. Sci. USA61 (1968) 1231-1237. Zbl0198.18203MR237713
  24. [24] Tits J., Reductive groups over p-adic fields, in: Borel A., Casselman W. (Eds.), Automorphic Forms, Representations, and L-Functions, Proc. Symp. Pure Math., 33, American Mathematical Society, Providence, RI, 1979, pp. 29-69. Zbl0415.20035MR546588
  25. [25] Waldspurger J.-L., Homogénéité de certaines distributions sur les groupes p-adiques, Inst. Hautes Études Sci. Publ. Math.81 (1995) 25-72. Zbl0841.22009MR1361755
  26. [26] Waldspurger J.-L., Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés p-adiques, Astérisque269 (2001). Zbl0965.22012MR1817880
  27. [27] Waldspurger J.-L., Quelques questions sur les intégrales orbitales unipotentes et les algèbres de Hecke, Bull. Soc. Math. France124 (1) (1996) 1-34. Zbl0876.22013MR1395005
  28. [28] Waldspurger J.-L., Quelques résultats de finitude concernant les distributions invariantes sur les algèbres de Lie p-adiques, preprint, 1993. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.