Regular Elements and Gelfand-Graev Representations for Disconnected Reductive Groups

Karine Sorlin

Bulletin de la Société Mathématique de France (2004)

  • Volume: 132, Issue: 2, page 157-199
  • ISSN: 0037-9484

Abstract

top
Let G be a connected reductive group defined over 𝔽 q and let F be the corresponding Frobenius endomorphism. Let σ be a quasi-central automorphism of G , which means that σ is quasi-semi-simple (i.e. σ stabilises ( T B ) where T is a maximal torus included in a Borel subgroup B of G ) and dim ( G σ ) > dim ( G σ ' ) for any quasi-semi-simple automorphism σ ' = σ ad ( g ) , where ad ( g ) is the conjugation by g for all g G . We suppose also that σ is rational. We define in this article Gelfand-Graev representations for the group G ˜ F = G F · σ when σ is unipotent and when it is semi-simple, which extend the σ -stable Gelfand-Graev representations for connected reductive groups. Let T be a σ -stable rational maximal torus of G included in a σ -stable rational Borel subgroup of G . Let U be the unipotent radical of B . In the connected reductive case, Gelfand-Graev representations of G F are obtained by inducing an irreducible linear character of U F which is called a regular character. We define a regular character of U F · σ as the extension of a σ -stable regular character of U F . When σ is unipotent, σ -stable Gelfand-Graev representations of G F are obtained by inducing σ -stable regular characters of U F . In this case, we define Gelfand-Graev representations of G F · σ as the representations obtained by inducing regular characters of U F · σ . When σ is semi-simple, the definition of Gelfand-Graev representations is more complicated. Gelfand-Graev representations of G F · σ have similar properties to Gelfand-Graev representations of G F . They are multiplicity free and their Harish-Chandra restrictions to a rational σ -stable Levi subgroup included in a rational σ -stable parabolic subgroup still are Gelfand-Graev representations. We say that an element of G · σ is regular if the dimension of its centralizer in  G is minimal among all elements of G · σ . The dual of any Gelfand-Graev representation of G F · σ is zero outside regular unipotent elements of  G F · σ when σ is unipotent (resp. outside regular pseudo-unipotent elements of  G F · σ ,i.e. conjugates under G of regular elements of U · σ , when σ is semi-simple). Moreover, Gelfand-Graev representations can be used to calculate the average value of irreducible characters of  G F · σ on the set of  G F -classes of regular unipotent (resp. pseudo-unipotent) elements of G F · σ if σ is unipotent (resp. semi-simple). When σ is semi-simple, the characteristic can be chosen good for ( G σ ) 0 and we can get the exact values of irreducible characters of G F · σ on G F -classes of regular pseudo-unipotent elements of G F · σ .

How to cite

top

Sorlin, Karine. "Éléments réguliers et représentations de Gelfand-Graev des groupes réductifs non connexes." Bulletin de la Société Mathématique de France 132.2 (2004): 157-199. <http://eudml.org/doc/272466>.

@article{Sorlin2004,
abstract = {Soient $G$ un groupe algébrique réductif connexe défini sur $\mathbb \{F\}_q$ et $F$ l’endomorphisme de Frobenius correspondant. Soit $\sigma $ un automorphisme rationnel quasi-central de $G$. Nous construisons ci-dessous l’équivalent des représentations de Gelfand-Graev du groupe $\widetilde\{G\}^F=G^F\!\cdot \langle \sigma \rangle $, lorsque $\sigma $ est unipotent et lorsqu’il est semi-simple. Nous montrons de plus que ces représentations vérifient des propriétés semblables à celles vérifiées par les représentations de Gelfand-Graev dans le cas connexe en particulier par rapport aux éléments réguliers.},
author = {Sorlin, Karine},
journal = {Bulletin de la Société Mathématique de France},
keywords = {finite reductive groups; disconnected algebraic groups},
language = {fre},
number = {2},
pages = {157-199},
publisher = {Société mathématique de France},
title = {Éléments réguliers et représentations de Gelfand-Graev des groupes réductifs non connexes},
url = {http://eudml.org/doc/272466},
volume = {132},
year = {2004},
}

TY - JOUR
AU - Sorlin, Karine
TI - Éléments réguliers et représentations de Gelfand-Graev des groupes réductifs non connexes
JO - Bulletin de la Société Mathématique de France
PY - 2004
PB - Société mathématique de France
VL - 132
IS - 2
SP - 157
EP - 199
AB - Soient $G$ un groupe algébrique réductif connexe défini sur $\mathbb {F}_q$ et $F$ l’endomorphisme de Frobenius correspondant. Soit $\sigma $ un automorphisme rationnel quasi-central de $G$. Nous construisons ci-dessous l’équivalent des représentations de Gelfand-Graev du groupe $\widetilde{G}^F=G^F\!\cdot \langle \sigma \rangle $, lorsque $\sigma $ est unipotent et lorsqu’il est semi-simple. Nous montrons de plus que ces représentations vérifient des propriétés semblables à celles vérifiées par les représentations de Gelfand-Graev dans le cas connexe en particulier par rapport aux éléments réguliers.
LA - fre
KW - finite reductive groups; disconnected algebraic groups
UR - http://eudml.org/doc/272466
ER -

References

top
  1. [1] R. Carter – Finite groups of Lie type, Wiley-Interscience, 1985. Zbl0567.20023MR794307
  2. [2] F. Digne, G. Lehrer & J. Michel – « The characters of the group of rational points of a reductive group with non-connected centre », J. reine angew. Math. 425 (1992), p. 155–192. Zbl0739.20018MR1151318
  3. [3] F. Digne & J. Michel – Representations of Finite Groups of Lie Type, London Math. Soc. Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. Zbl0815.20014MR1118841
  4. [4] —, « Groupes réductifs non connexes », Ann. Sci. École Normale Sup.27 (1994), p. 345–406. Zbl0846.20040MR1272294
  5. [5] —, « Points fixes des automorphismes quasi-semi-simples », C.R. Acad. Sci. Paris, Sér. I 334 (2002), p. 1055–1060. Zbl1001.20043MR1911646
  6. [6] G. Malle – « Generalized Deligne-Lusztig characters », J. Alg. 159 (1993), no. 1, p. 64–97. Zbl0812.20024MR1231204
  7. [7] N. Spaltenstein – Classes unipotentes et sous-groupes de Borel, Lectures Notes in Math., vol. 946, Springer, 1982. Zbl0486.20025MR672610
  8. [8] R. Steinberg – Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc., vol. 80, American Mathematical Society, Providence, RI, 1968. Zbl0164.02902MR230728

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.