On semisimple classes and semisimple characters in finite reductive groups

Olivier Brunat[1]

  • [1] Université Denis Diderot - Paris 7 UFR de Mathématiques 175, rue du Chevaleret F-75013 Paris.

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 5, page 1671-1716
  • ISSN: 0373-0956

Abstract

top
In this article, we study the elements with disconnected centralizer in the Brauer complex associated to a simple algebraic group G defined over a finite field with corresponding Frobenius map F and derive the number of F -stable semisimple classes of G with disconnected centralizer when the order of the fundamental group has prime order. We also discuss extendibility of semisimple characters of the fixed point subgroup G F to their inertia group in the full automorphism group. As a consequence, we prove that “twisted” and “untwisted” simple groups of type E 6 are “good” in defining characteristic, which is a contribution to the general program initialized by Isaacs, Malle and Navarro to prove the McKay Conjecture in representation theory of finite groups.

How to cite

top

Brunat, Olivier. "On semisimple classes and semisimple characters in finite reductive groups." Annales de l’institut Fourier 62.5 (2012): 1671-1716. <http://eudml.org/doc/251149>.

@article{Brunat2012,
abstract = {In this article, we study the elements with disconnected centralizer in the Brauer complex associated to a simple algebraic group $\mathbf\{G\}$ defined over a finite field with corresponding Frobenius map $F$ and derive the number of $F$-stable semisimple classes of $\mathbf\{G\}$ with disconnected centralizer when the order of the fundamental group has prime order. We also discuss extendibility of semisimple characters of the fixed point subgroup $\mathbf\{G\}^F$ to their inertia group in the full automorphism group. As a consequence, we prove that “twisted” and “untwisted” simple groups of type $E_6$ are “good” in defining characteristic, which is a contribution to the general program initialized by Isaacs, Malle and Navarro to prove the McKay Conjecture in representation theory of finite groups.},
affiliation = {Université Denis Diderot - Paris 7 UFR de Mathématiques 175, rue du Chevaleret F-75013 Paris.},
author = {Brunat, Olivier},
journal = {Annales de l’institut Fourier},
keywords = {algebraic groups; semisimple classes; Brauer complex; semisimple characters; finite reductive groups; disconnected centralizers; inductive McKay condition; finite algebraic groups; Brauer complexes; McKay conjecture; Gel'fand-Graev characters; numbers of irreducible characters},
language = {eng},
number = {5},
pages = {1671-1716},
publisher = {Association des Annales de l’institut Fourier},
title = {On semisimple classes and semisimple characters in finite reductive groups},
url = {http://eudml.org/doc/251149},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Brunat, Olivier
TI - On semisimple classes and semisimple characters in finite reductive groups
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 5
SP - 1671
EP - 1716
AB - In this article, we study the elements with disconnected centralizer in the Brauer complex associated to a simple algebraic group $\mathbf{G}$ defined over a finite field with corresponding Frobenius map $F$ and derive the number of $F$-stable semisimple classes of $\mathbf{G}$ with disconnected centralizer when the order of the fundamental group has prime order. We also discuss extendibility of semisimple characters of the fixed point subgroup $\mathbf{G}^F$ to their inertia group in the full automorphism group. As a consequence, we prove that “twisted” and “untwisted” simple groups of type $E_6$ are “good” in defining characteristic, which is a contribution to the general program initialized by Isaacs, Malle and Navarro to prove the McKay Conjecture in representation theory of finite groups.
LA - eng
KW - algebraic groups; semisimple classes; Brauer complex; semisimple characters; finite reductive groups; disconnected centralizers; inductive McKay condition; finite algebraic groups; Brauer complexes; McKay conjecture; Gel'fand-Graev characters; numbers of irreducible characters
UR - http://eudml.org/doc/251149
ER -

References

top
  1. C. Bonnafé, Éléments unipotents réguliers des sous-groupes de Levi, Canad. J. Math. 56 (2004), 246-276 Zbl1080.20037MR2040915
  2. Cédric Bonnafé, Quasi-isolated elements in reductive groups, Comm. Algebra 33 (2005), 2315-2337 Zbl1096.20037MR2153225
  3. Cédric Bonnafé, Sur les caractères des groupes réductifs finis à centre non connexe: applications aux groupes spéciaux linéaires et unitaires, Astérisque (2006) Zbl1157.20022MR2274998
  4. N. Bourbaki, Lie groups and Lie algebras. Chapters 4–6, (2002), Springer-Verlag, Berlin Zbl0672.22001MR1890629
  5. O. Brunat, F. Himstedt, On equivariant bijections relative to the defining characteristic, J. Algebra 334 (2011), 150-174 Zbl1252.20009MR2787657
  6. Olivier Brunat, On the inductive McKay condition in the defining characteristic, Math. Z. 263 (2009), 411-424 Zbl1186.20014MR2534124
  7. Olivier Brunat, Counting p -characters in finite reductive groups, J. Lond. Math. Soc. (2) 81 (2010), 544-562 Zbl1251.20017MR2650783
  8. R.W. Carter, Simple groups of Lie type, (1972), John Wiley & Sons, London-New York-Sydney Zbl0723.20006MR407163
  9. R.W. Carter, Finite groups of Lie type, (1985), John Wiley & Sons Inc., New York Zbl0567.20023MR794307
  10. P. Deligne, G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), 103-161 Zbl0336.20029MR393266
  11. D. I. Deriziotis, The Brauer complex of a Chevalley group, J. Algebra 70 (1981), 261-269 Zbl0475.20034MR618393
  12. F. Digne, G. I. Lehrer, J. Michel, The characters of the group of rational points of a reductive group with non-connected centre, J. Reine Angew. Math. 425 (1992), 155-192 Zbl0739.20018MR1151318
  13. F. Digne, G. I. Lehrer, J. Michel, On Gel fand-Graev characters of reductive groups with disconnected centre, J. Reine Angew. Math. 491 (1997), 131-147 Zbl0880.20033MR1476090
  14. F. Digne, J. Michel, Representations of finite groups of Lie type, 21 (1991), Cambridge University Press, Cambridge Zbl0815.20014MR1118841
  15. F. Digne, J. Michel, Groupes réductifs non connexes, Ann. Sci. École Norm. Sup. (4) 27 (1994), 345-406 Zbl0846.20040MR1272294
  16. François Digne, Jean Michel, Points fixes des automorphismes quasi-semi-simples, C. R. Math. Acad. Sci. Paris 334 (2002), 1055-1060 Zbl1001.20043MR1911646
  17. D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Number 3, 40 (1991), American Mathematical Society, Cambridge Zbl0816.20016MR1303592
  18. James E. Humphreys, Ordinary and modular representations of Chevalley groups, (1976), Springer-Verlag, Berlin Zbl0341.20037MR453884
  19. I.M. Isaacs, Character theory of finite groups, (1976), Academic Press [Harcourt Brace Jovanovich Publishers], New York Zbl0337.20005MR460423
  20. I.M. Isaacs, G. Malle, G. Navarro, A reduction theorem for McKay conjecture, Invent. Math. 170 (2007), 33-101 Zbl1138.20010MR2336079
  21. Gunter Malle, Generalized Deligne-Lusztig characters, J. Algebra 159 (1993), 64-97 Zbl0812.20024MR1231204
  22. J. Maslowski, Equivariant character bijections in groups of Lie type, (2010), TU Kaiserslautern 
  23. Karine Sorlin, Éléments réguliers et représentations de Gelfand-Graev des groupes réductifs non connexes, Bull. Soc. Math. France 132 (2004), 157-199 Zbl1059.20017MR2075565
  24. B. Späth, Inductive McKay condition in defining characteristic, preprint Zbl1251.20020
  25. T. A. Springer, Linear algebraic groups, (2009), Birkhäuser Boston Inc., Boston, MA Zbl1202.20048MR2458469

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.