On semisimple classes and semisimple characters in finite reductive groups
- [1] Université Denis Diderot - Paris 7 UFR de Mathématiques 175, rue du Chevaleret F-75013 Paris.
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 5, page 1671-1716
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBrunat, Olivier. "On semisimple classes and semisimple characters in finite reductive groups." Annales de l’institut Fourier 62.5 (2012): 1671-1716. <http://eudml.org/doc/251149>.
@article{Brunat2012,
abstract = {In this article, we study the elements with disconnected centralizer in the Brauer complex associated to a simple algebraic group $\mathbf\{G\}$ defined over a finite field with corresponding Frobenius map $F$ and derive the number of $F$-stable semisimple classes of $\mathbf\{G\}$ with disconnected centralizer when the order of the fundamental group has prime order. We also discuss extendibility of semisimple characters of the fixed point subgroup $\mathbf\{G\}^F$ to their inertia group in the full automorphism group. As a consequence, we prove that “twisted” and “untwisted” simple groups of type $E_6$ are “good” in defining characteristic, which is a contribution to the general program initialized by Isaacs, Malle and Navarro to prove the McKay Conjecture in representation theory of finite groups.},
affiliation = {Université Denis Diderot - Paris 7 UFR de Mathématiques 175, rue du Chevaleret F-75013 Paris.},
author = {Brunat, Olivier},
journal = {Annales de l’institut Fourier},
keywords = {algebraic groups; semisimple classes; Brauer complex; semisimple characters; finite reductive groups; disconnected centralizers; inductive McKay condition; finite algebraic groups; Brauer complexes; McKay conjecture; Gel'fand-Graev characters; numbers of irreducible characters},
language = {eng},
number = {5},
pages = {1671-1716},
publisher = {Association des Annales de l’institut Fourier},
title = {On semisimple classes and semisimple characters in finite reductive groups},
url = {http://eudml.org/doc/251149},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Brunat, Olivier
TI - On semisimple classes and semisimple characters in finite reductive groups
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 5
SP - 1671
EP - 1716
AB - In this article, we study the elements with disconnected centralizer in the Brauer complex associated to a simple algebraic group $\mathbf{G}$ defined over a finite field with corresponding Frobenius map $F$ and derive the number of $F$-stable semisimple classes of $\mathbf{G}$ with disconnected centralizer when the order of the fundamental group has prime order. We also discuss extendibility of semisimple characters of the fixed point subgroup $\mathbf{G}^F$ to their inertia group in the full automorphism group. As a consequence, we prove that “twisted” and “untwisted” simple groups of type $E_6$ are “good” in defining characteristic, which is a contribution to the general program initialized by Isaacs, Malle and Navarro to prove the McKay Conjecture in representation theory of finite groups.
LA - eng
KW - algebraic groups; semisimple classes; Brauer complex; semisimple characters; finite reductive groups; disconnected centralizers; inductive McKay condition; finite algebraic groups; Brauer complexes; McKay conjecture; Gel'fand-Graev characters; numbers of irreducible characters
UR - http://eudml.org/doc/251149
ER -
References
top- C. Bonnafé, Éléments unipotents réguliers des sous-groupes de Levi, Canad. J. Math. 56 (2004), 246-276 Zbl1080.20037MR2040915
- Cédric Bonnafé, Quasi-isolated elements in reductive groups, Comm. Algebra 33 (2005), 2315-2337 Zbl1096.20037MR2153225
- Cédric Bonnafé, Sur les caractères des groupes réductifs finis à centre non connexe: applications aux groupes spéciaux linéaires et unitaires, Astérisque (2006) Zbl1157.20022MR2274998
- N. Bourbaki, Lie groups and Lie algebras. Chapters 4–6, (2002), Springer-Verlag, Berlin Zbl0672.22001MR1890629
- O. Brunat, F. Himstedt, On equivariant bijections relative to the defining characteristic, J. Algebra 334 (2011), 150-174 Zbl1252.20009MR2787657
- Olivier Brunat, On the inductive McKay condition in the defining characteristic, Math. Z. 263 (2009), 411-424 Zbl1186.20014MR2534124
- Olivier Brunat, Counting -characters in finite reductive groups, J. Lond. Math. Soc. (2) 81 (2010), 544-562 Zbl1251.20017MR2650783
- R.W. Carter, Simple groups of Lie type, (1972), John Wiley & Sons, London-New York-Sydney Zbl0723.20006MR407163
- R.W. Carter, Finite groups of Lie type, (1985), John Wiley & Sons Inc., New York Zbl0567.20023MR794307
- P. Deligne, G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), 103-161 Zbl0336.20029MR393266
- D. I. Deriziotis, The Brauer complex of a Chevalley group, J. Algebra 70 (1981), 261-269 Zbl0475.20034MR618393
- F. Digne, G. I. Lehrer, J. Michel, The characters of the group of rational points of a reductive group with non-connected centre, J. Reine Angew. Math. 425 (1992), 155-192 Zbl0739.20018MR1151318
- F. Digne, G. I. Lehrer, J. Michel, On Gel fand-Graev characters of reductive groups with disconnected centre, J. Reine Angew. Math. 491 (1997), 131-147 Zbl0880.20033MR1476090
- F. Digne, J. Michel, Representations of finite groups of Lie type, 21 (1991), Cambridge University Press, Cambridge Zbl0815.20014MR1118841
- F. Digne, J. Michel, Groupes réductifs non connexes, Ann. Sci. École Norm. Sup. (4) 27 (1994), 345-406 Zbl0846.20040MR1272294
- François Digne, Jean Michel, Points fixes des automorphismes quasi-semi-simples, C. R. Math. Acad. Sci. Paris 334 (2002), 1055-1060 Zbl1001.20043MR1911646
- D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Number 3, 40 (1991), American Mathematical Society, Cambridge Zbl0816.20016MR1303592
- James E. Humphreys, Ordinary and modular representations of Chevalley groups, (1976), Springer-Verlag, Berlin Zbl0341.20037MR453884
- I.M. Isaacs, Character theory of finite groups, (1976), Academic Press [Harcourt Brace Jovanovich Publishers], New York Zbl0337.20005MR460423
- I.M. Isaacs, G. Malle, G. Navarro, A reduction theorem for McKay conjecture, Invent. Math. 170 (2007), 33-101 Zbl1138.20010MR2336079
- Gunter Malle, Generalized Deligne-Lusztig characters, J. Algebra 159 (1993), 64-97 Zbl0812.20024MR1231204
- J. Maslowski, Equivariant character bijections in groups of Lie type, (2010), TU Kaiserslautern
- Karine Sorlin, Éléments réguliers et représentations de Gelfand-Graev des groupes réductifs non connexes, Bull. Soc. Math. France 132 (2004), 157-199 Zbl1059.20017MR2075565
- B. Späth, Inductive McKay condition in defining characteristic, preprint Zbl1251.20020
- T. A. Springer, Linear algebraic groups, (2009), Birkhäuser Boston Inc., Boston, MA Zbl1202.20048MR2458469
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.