Volume of spheres in doubling metric measured spaces and in groups of polynomial growth

Romain Tessera

Bulletin de la Société Mathématique de France (2007)

  • Volume: 135, Issue: 1, page 47-64
  • ISSN: 0037-9484

Abstract

top
Let G be a compactly generated locally compact group and let U be a compact generating set. We prove that if G has polynomial growth, then ( U n ) n is a Følner sequence and we give a polynomial estimate of the rate of decay of μ ( U n + 1 U n ) μ ( U n ) . Our proof uses only two ingredients: the doubling property and a weak geodesic property that we call Property (M). As a matter of fact, the result remains true in a wide class of doubling metric measured spaces including manifolds and graphs. As an application, we obtain a L p -pointwise ergodic theorem ( 1 p < ) for the balls averages, which holds for any compactly generated locally compact group G of polynomial growth.

How to cite

top

Tessera, Romain. "Volume of spheres in doubling metric measured spaces and in groups of polynomial growth." Bulletin de la Société Mathématique de France 135.1 (2007): 47-64. <http://eudml.org/doc/272467>.

@article{Tessera2007,
abstract = {Let $G$ be a compactly generated locally compact group and let $U$ be a compact generating set. We prove that if $G$ has polynomial growth, then $(U^n)_\{n\in \mathbb \{N\}\}$ is a Følner sequence and we give a polynomial estimate of the rate of decay of $ \frac\{\mu (U^\{n+1\}\setminus U^n)\}\{\mu (U^n)\}. $ Our proof uses only two ingredients: the doubling property and a weak geodesic property that we call Property (M). As a matter of fact, the result remains true in a wide class of doubling metric measured spaces including manifolds and graphs. As an application, we obtain a $L^p$-pointwise ergodic theorem ($1\le p&lt;\infty $) for the balls averages, which holds for any compactly generated locally compact group $G$ of polynomial growth.},
author = {Tessera, Romain},
journal = {Bulletin de la Société Mathématique de France},
keywords = {isoperimetry; spheres; locally compact groups; volume growth in groups; metric measure spaces; doubling property},
language = {eng},
number = {1},
pages = {47-64},
publisher = {Société mathématique de France},
title = {Volume of spheres in doubling metric measured spaces and in groups of polynomial growth},
url = {http://eudml.org/doc/272467},
volume = {135},
year = {2007},
}

TY - JOUR
AU - Tessera, Romain
TI - Volume of spheres in doubling metric measured spaces and in groups of polynomial growth
JO - Bulletin de la Société Mathématique de France
PY - 2007
PB - Société mathématique de France
VL - 135
IS - 1
SP - 47
EP - 64
AB - Let $G$ be a compactly generated locally compact group and let $U$ be a compact generating set. We prove that if $G$ has polynomial growth, then $(U^n)_{n\in \mathbb {N}}$ is a Følner sequence and we give a polynomial estimate of the rate of decay of $ \frac{\mu (U^{n+1}\setminus U^n)}{\mu (U^n)}. $ Our proof uses only two ingredients: the doubling property and a weak geodesic property that we call Property (M). As a matter of fact, the result remains true in a wide class of doubling metric measured spaces including manifolds and graphs. As an application, we obtain a $L^p$-pointwise ergodic theorem ($1\le p&lt;\infty $) for the balls averages, which holds for any compactly generated locally compact group $G$ of polynomial growth.
LA - eng
KW - isoperimetry; spheres; locally compact groups; volume growth in groups; metric measure spaces; doubling property
UR - http://eudml.org/doc/272467
ER -

References

top
  1. [1] T. Bewley – « Extension of the Birkhoff and von Neumann ergodic theorems to semigroup actions », (1971). Zbl0226.28009MR306444
  2. [2] E. Breuillard – « Geometry of groups of polynomial growth and shape of large balls », preprint. 
  3. [3] J. Chatard – « Applications des propriétés de moyenne d’un groupe localement compact à la théorie ergodique », Ann. Inst. Henri Poincaré 6 (1970), p. 307–326, 473–499. Zbl0208.15303MR297965
  4. [4] T. Colding & W. Minicozzi – « Liouville theorems for harmonic sections and applications », Comm. Pure. Appl. Math.51 (1998), p. 113–138. Zbl0928.58022MR1488297
  5. [5] T. Coulhon & L. Saloff-Coste – « Isopérimétrie pour les groupes et les variétés », Rev. Mat. Iberoamericana9 (1993), p. 293–314. Zbl0782.53066MR1232845
  6. [6] W. R. Emerson – « The pointwise ergodic theorem for amenable groups », Amer. J. Math.96 (1974), p. 472–487. Zbl0296.22009MR354926
  7. [7] W. R. Emerson & F. Greenleaf – « Asymptotic behavior of products E p = E + + E in locally compact abelian groups », Trans. Amer. Math. Soc. 145 (1969), p. 171. Zbl0214.38003MR249535
  8. [8] F. Greenleaf – Invariant means on topological groups and their applications, American Book Company, 1969. Zbl0174.19001MR251549
  9. [9] M. Gromov – « Groups of polynomial growth and expanding maps », Publ. Math. Inst. Hautes Études Sci.53 (1981), p. 53–73. Zbl0474.20018MR623534
  10. [10] —, Asymptotic invariants of groups, vol. 182, Cambridge University Press, 1993. 
  11. [11] Y. Guivarc’h – « Croissance polynomiale et périodes des fonctions harmoniques », Bull. Soc. Math. France101 (1973), p. 333–379. Zbl0294.43003MR369608
  12. [12] Y. Kawada – « Über den Mittelwert der messbaren fast-periodischen Funktionen auf einer Gruppe », Proc. Imp. Acad. (Tokyo) 19 (1943), p. 120–122. Zbl0063.03174MR14098
  13. [13] V. Losert – « On the structure of groups with polynomial growth », Math. Z.195 (1986), p. 109–118. Zbl0633.22002MR888132
  14. [14] —, « On the structure of groups with polynomial growth II », London Math. Soc.63 (2001), p. 640–654. Zbl1010.22008MR1825980
  15. [15] G. D. Mostow – « Some applications of representative functions to solvmanifolds », Amer. J. Math.93 (1971), p. 11–32. Zbl0228.22015MR283819
  16. [16] A. Nevo – « Pointwise ergodic theorems for actions of groups », 2005, to appear in Handbook of Dynamical Systems, Vol.1B. Zbl1130.37310MR2186253
  17. [17] P. Pansu – « Croissance des boules et des géodésiques fermées dans les nilvariétés », Ergodic Theory Dynam. Systems3 (1983), p. 415–445. Zbl0509.53040MR741395
  18. [18] C. Pittet – « The isoperimetric profile of homogeneous Riemannian manifolds », J. Differential Geom.54 (2000), p. 255–302. Zbl1035.53069MR1818180
  19. [19] C. Pittet & L. Saloff-Coste – « A survey on the relationships between volume growth, isoperimetry, and the behaviour of simple random walk on Cayley graphs, with examples », unpublished manuscript, 1997. 
  20. [20] A. Tempelman – « Ergodic theorems for general dynamical systems », Sov. Math. Dokl.8 (1992), p. 1213–1216. Zbl0172.07303
  21. [21] R. Tessera – « Asymptotic isoperimetry of balls in metric measure spaces », Publ. Mat.50 (2006), p. 315–348. Zbl1116.53028MR2273664
  22. [22] N. Varopoulos – « Analysis on Lie groups », J. Funct. Anal.76 (1988), p. 346–410. Zbl0634.22008MR924464
  23. [23] H. C. Wang – « Discrete subgroups of solvable Lie groups », Ann. of Math.64 (1956), p. 1–19. Zbl0073.25803MR78645

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.