Volume of spheres in doubling metric measured spaces and in groups of polynomial growth
Bulletin de la Société Mathématique de France (2007)
- Volume: 135, Issue: 1, page 47-64
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topTessera, Romain. "Volume of spheres in doubling metric measured spaces and in groups of polynomial growth." Bulletin de la Société Mathématique de France 135.1 (2007): 47-64. <http://eudml.org/doc/272467>.
@article{Tessera2007,
abstract = {Let $G$ be a compactly generated locally compact group and let $U$ be a compact generating set. We prove that if $G$ has polynomial growth, then $(U^n)_\{n\in \mathbb \{N\}\}$ is a Følner sequence and we give a polynomial estimate of the rate of decay of $ \frac\{\mu (U^\{n+1\}\setminus U^n)\}\{\mu (U^n)\}. $ Our proof uses only two ingredients: the doubling property and a weak geodesic property that we call Property (M). As a matter of fact, the result remains true in a wide class of doubling metric measured spaces including manifolds and graphs. As an application, we obtain a $L^p$-pointwise ergodic theorem ($1\le p<\infty $) for the balls averages, which holds for any compactly generated locally compact group $G$ of polynomial growth.},
author = {Tessera, Romain},
journal = {Bulletin de la Société Mathématique de France},
keywords = {isoperimetry; spheres; locally compact groups; volume growth in groups; metric measure spaces; doubling property},
language = {eng},
number = {1},
pages = {47-64},
publisher = {Société mathématique de France},
title = {Volume of spheres in doubling metric measured spaces and in groups of polynomial growth},
url = {http://eudml.org/doc/272467},
volume = {135},
year = {2007},
}
TY - JOUR
AU - Tessera, Romain
TI - Volume of spheres in doubling metric measured spaces and in groups of polynomial growth
JO - Bulletin de la Société Mathématique de France
PY - 2007
PB - Société mathématique de France
VL - 135
IS - 1
SP - 47
EP - 64
AB - Let $G$ be a compactly generated locally compact group and let $U$ be a compact generating set. We prove that if $G$ has polynomial growth, then $(U^n)_{n\in \mathbb {N}}$ is a Følner sequence and we give a polynomial estimate of the rate of decay of $ \frac{\mu (U^{n+1}\setminus U^n)}{\mu (U^n)}. $ Our proof uses only two ingredients: the doubling property and a weak geodesic property that we call Property (M). As a matter of fact, the result remains true in a wide class of doubling metric measured spaces including manifolds and graphs. As an application, we obtain a $L^p$-pointwise ergodic theorem ($1\le p<\infty $) for the balls averages, which holds for any compactly generated locally compact group $G$ of polynomial growth.
LA - eng
KW - isoperimetry; spheres; locally compact groups; volume growth in groups; metric measure spaces; doubling property
UR - http://eudml.org/doc/272467
ER -
References
top- [1] T. Bewley – « Extension of the Birkhoff and von Neumann ergodic theorems to semigroup actions », (1971). Zbl0226.28009MR306444
- [2] E. Breuillard – « Geometry of groups of polynomial growth and shape of large balls », preprint.
- [3] J. Chatard – « Applications des propriétés de moyenne d’un groupe localement compact à la théorie ergodique », Ann. Inst. Henri Poincaré 6 (1970), p. 307–326, 473–499. Zbl0208.15303MR297965
- [4] T. Colding & W. Minicozzi – « Liouville theorems for harmonic sections and applications », Comm. Pure. Appl. Math.51 (1998), p. 113–138. Zbl0928.58022MR1488297
- [5] T. Coulhon & L. Saloff-Coste – « Isopérimétrie pour les groupes et les variétés », Rev. Mat. Iberoamericana9 (1993), p. 293–314. Zbl0782.53066MR1232845
- [6] W. R. Emerson – « The pointwise ergodic theorem for amenable groups », Amer. J. Math.96 (1974), p. 472–487. Zbl0296.22009MR354926
- [7] W. R. Emerson & F. Greenleaf – « Asymptotic behavior of products in locally compact abelian groups », Trans. Amer. Math. Soc. 145 (1969), p. 171. Zbl0214.38003MR249535
- [8] F. Greenleaf – Invariant means on topological groups and their applications, American Book Company, 1969. Zbl0174.19001MR251549
- [9] M. Gromov – « Groups of polynomial growth and expanding maps », Publ. Math. Inst. Hautes Études Sci.53 (1981), p. 53–73. Zbl0474.20018MR623534
- [10] —, Asymptotic invariants of groups, vol. 182, Cambridge University Press, 1993.
- [11] Y. Guivarc’h – « Croissance polynomiale et périodes des fonctions harmoniques », Bull. Soc. Math. France101 (1973), p. 333–379. Zbl0294.43003MR369608
- [12] Y. Kawada – « Über den Mittelwert der messbaren fast-periodischen Funktionen auf einer Gruppe », Proc. Imp. Acad. (Tokyo) 19 (1943), p. 120–122. Zbl0063.03174MR14098
- [13] V. Losert – « On the structure of groups with polynomial growth », Math. Z.195 (1986), p. 109–118. Zbl0633.22002MR888132
- [14] —, « On the structure of groups with polynomial growth II », London Math. Soc.63 (2001), p. 640–654. Zbl1010.22008MR1825980
- [15] G. D. Mostow – « Some applications of representative functions to solvmanifolds », Amer. J. Math.93 (1971), p. 11–32. Zbl0228.22015MR283819
- [16] A. Nevo – « Pointwise ergodic theorems for actions of groups », 2005, to appear in Handbook of Dynamical Systems, Vol.1B. Zbl1130.37310MR2186253
- [17] P. Pansu – « Croissance des boules et des géodésiques fermées dans les nilvariétés », Ergodic Theory Dynam. Systems3 (1983), p. 415–445. Zbl0509.53040MR741395
- [18] C. Pittet – « The isoperimetric profile of homogeneous Riemannian manifolds », J. Differential Geom.54 (2000), p. 255–302. Zbl1035.53069MR1818180
- [19] C. Pittet & L. Saloff-Coste – « A survey on the relationships between volume growth, isoperimetry, and the behaviour of simple random walk on Cayley graphs, with examples », unpublished manuscript, 1997.
- [20] A. Tempelman – « Ergodic theorems for general dynamical systems », Sov. Math. Dokl.8 (1992), p. 1213–1216. Zbl0172.07303
- [21] R. Tessera – « Asymptotic isoperimetry of balls in metric measure spaces », Publ. Mat.50 (2006), p. 315–348. Zbl1116.53028MR2273664
- [22] N. Varopoulos – « Analysis on Lie groups », J. Funct. Anal.76 (1988), p. 346–410. Zbl0634.22008MR924464
- [23] H. C. Wang – « Discrete subgroups of solvable Lie groups », Ann. of Math.64 (1956), p. 1–19. Zbl0073.25803MR78645
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.