Mass of cusps, time of return and windings in negative curvature
Nathanaël Enriquez; Jacques Franchi
Bulletin de la Société Mathématique de France (2002)
- Volume: 130, Issue: 3, page 349-386
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Apanasov & X. Xie – « Geometrically finite complex hyperbolic manifolds », Intern. J. of Math. 8 (1997), no. 6, p. 703–757. Zbl0912.53027MR1470852
- [2] M. Bourdon – « Structure conforme au bord et flot géodésique d’un CAT-espace », L’Ens. Math. 41 (1995), p. 63–102. Zbl0871.58069MR1341941
- [3] B. Bowditch – « Geometrical finiteness with variable negative curvature », Duke Math. J. 77 (1995), no. 1, p. 229–274. Zbl0877.57018MR1317633
- [4] K. Corlette & A. Iozzi – « Limit sets of discrete groups of isometries of exotic hyperbolic spaces », Trans. AMS 351 (1999), no. 4, p. 1507–1530. Zbl0932.37011MR1458321
- [5] F. Dal’bo, J.-P. Otal & M. Peigné – « Séries de Poincaré des groupes géométriquement finis », Israël J. Math.118 (2000), p. 109–124. Zbl0968.53023MR1776078
- [6] J. de Sam Lazaro & P.-A. Meyer – « Questions de théorie des flots », Séminaire de Probabilités IX (P.-A. Meyer, éd.), Lecture Notes, vol. 465, Springer, 1975. Zbl0311.60019
- [7] N. Enriquez, J. Franchi & Y. Le Jan – « Stable windings on hyperbolic surfaces », Prob. Th. Rel. Fields119 (2001), p. 213–255. Zbl1172.37311MR1818247
- [8] W. Feller – An introduction to probability theory and its applications, II, J. Wiley, New-York, 1966, 1971. Zbl0219.60003
- [9] W. Goldman – Complex hyperbolic geometry, Oxford Univ. Press, 1999. Zbl0939.32024MR1695450
- [10] Y. Guivarc’h & Y. Le Jan – « Asymptotic winding of the geodesic flow on modular surfaces and continued fractions », Ann. scient. Éc. Norm. Sup. série 26 (1993), no. 1, p. 23–50. Zbl0784.60076MR1209912
- [11] S. Hersonsky & F. Paulin – « On the volumes of complex hyperbolic manifolds », Duke Math. J. 84 (1996), no. 3, p. 719–737. Zbl0866.53036MR1408542
- [12] —, « On the rigidity of discrete isometry groups of negatively curved spaces », Comment. Math. Helv.72 (1997), p. 349–388. Zbl0908.57009MR1476054
- [13] —, « Diophantine approximation in negatively curved manifolds and in the Heisenberg group », version préliminaire, 2001.
- [14] V. Kaimanovich – « Invariant measures of the geodesic flow and measures at infinity of negatively curved manifolds », Ann. IHP Phys. Th. 53 (1990), no. 4, p. 361–393. Zbl0725.58026MR1096098
- [15] S. Patterson – « Lectures on measures on limit sets of Kleinian groups », Analytical and geometrical aspects of hyperbolic space (D. Epstein, éd.), London Math. Society, Lecture Note Series, vol. 111, Cambridge University Press, 1987, p. 281–323. Zbl0611.30036MR903855
- [16] T. Roblin – « Sur la fonction orbitale des groupes discrets en courbure négative », Ann. Inst. Fourier 52 (2002), no. 1, p. 145–151. Zbl1008.20040MR1881574
- [17] D. Sullivan – « The density at infinity of a discrete group of hyperbolic motions », Publ. Math. IHES50 (1979), p. 171–209. Zbl0439.30034MR556586
- [18] —, « Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups », Acta Math.153 (1984), p. 259–277. Zbl0566.58022MR766265