An approximation property of quadratic irrationals

Takao Komatsu

Bulletin de la Société Mathématique de France (2002)

  • Volume: 130, Issue: 1, page 35-48
  • ISSN: 0037-9484

Abstract

top
Let α > 1 be irrational. Several authors studied the numbers m ( α ) = inf { | y | : y Λ m , y 0 } , where m is a positive integer and Λ m denotes the set of all real numbers of the form y = ϵ 0 α n + ϵ 1 α n - 1 + + ϵ n - 1 α + ϵ n with restricted integer coefficients | ϵ i | m . The value of 1 ( α ) was determined for many particular Pisot numbers and m ( α ) for the golden number. In this paper the value of  m ( α ) is determined for irrational numbers  α , satisfying α 2 = a α ± 1 with a positive integer a .

How to cite

top

Komatsu, Takao. "An approximation property of quadratic irrationals." Bulletin de la Société Mathématique de France 130.1 (2002): 35-48. <http://eudml.org/doc/272476>.

@article{Komatsu2002,
abstract = {Let $\alpha &gt;1$ be irrational. Several authors studied the numbers\[ \{\ell ^m(\alpha )=\inf \lbrace \, |y|:y\in \Lambda \_m,\, y\ne 0\rbrace \}, \]where $m$ is a positive integer and $\Lambda _m$ denotes the set of all real numbers of the form $y=\epsilon _0\alpha ^n+\epsilon _1\alpha ^\{n-1\}+\cdots +\epsilon _\{n-1\}\alpha +\epsilon _n$ with restricted integer coefficients $|\epsilon _i|\le m$. The value of $\ell ^1(\alpha )$ was determined for many particular Pisot numbers and $\ell ^m(\alpha )$ for the golden number. In this paper the value of $\ell ^m(\alpha )$ is determined for irrational numbers $\alpha $, satisfying $\alpha ^2=a\alpha \pm 1$ with a positive integer $a$.},
author = {Komatsu, Takao},
journal = {Bulletin de la Société Mathématique de France},
keywords = {approximation property; quadratic irrationals; continued fractions},
language = {eng},
number = {1},
pages = {35-48},
publisher = {Société mathématique de France},
title = {An approximation property of quadratic irrationals},
url = {http://eudml.org/doc/272476},
volume = {130},
year = {2002},
}

TY - JOUR
AU - Komatsu, Takao
TI - An approximation property of quadratic irrationals
JO - Bulletin de la Société Mathématique de France
PY - 2002
PB - Société mathématique de France
VL - 130
IS - 1
SP - 35
EP - 48
AB - Let $\alpha &gt;1$ be irrational. Several authors studied the numbers\[ {\ell ^m(\alpha )=\inf \lbrace \, |y|:y\in \Lambda _m,\, y\ne 0\rbrace }, \]where $m$ is a positive integer and $\Lambda _m$ denotes the set of all real numbers of the form $y=\epsilon _0\alpha ^n+\epsilon _1\alpha ^{n-1}+\cdots +\epsilon _{n-1}\alpha +\epsilon _n$ with restricted integer coefficients $|\epsilon _i|\le m$. The value of $\ell ^1(\alpha )$ was determined for many particular Pisot numbers and $\ell ^m(\alpha )$ for the golden number. In this paper the value of $\ell ^m(\alpha )$ is determined for irrational numbers $\alpha $, satisfying $\alpha ^2=a\alpha \pm 1$ with a positive integer $a$.
LA - eng
KW - approximation property; quadratic irrationals; continued fractions
UR - http://eudml.org/doc/272476
ER -

References

top
  1. [1] Y. Bugeaud – « On a property of Pisot numbers and related questions », Acta Math. Hungar.73 (1996), p. 33–39. Zbl0923.11148MR1415918
  2. [2] M. Djawadi & G. Hofmeister – « Linear diophantine problems », Arch. Math. (Basel) 66 (1996), p. 19–29. Zbl0854.11016MR1363774
  3. [3] P. Erdős, I. Joó & M. Joó – « On a problem of Tamás Varga », Bull. Soc. Math. France120 (1992), p. 507–521. Zbl0787.11002MR1194274
  4. [4] P. Erdős, I. Joó & V. Komornik – « Characterization of the unique expressions 1 = q - n i and related problems », Bull. Soc. Math. France118 (1990), p. 377–390. Zbl0721.11005MR1078082
  5. [5] —, « On the sequence of numbers of the form ϵ 0 + ϵ 1 q + + ϵ n q n , ϵ i { 0 , 1 } », Acta Arith.83 (1998), p. 201–210. Zbl0896.11006MR1611185
  6. [6] P. Erdős & V. Komornik – « On developments in noninteger bases », Acta Math. Hungar.79 (1998), p. 57–83. Zbl0906.11008MR1611948
  7. [7] V. Komornik & P. Loreti – « Unique developments in non-integer bases », Amer. Math. Monthly105 (1998), p. 636–639. Zbl0918.11006MR1633077
  8. [8] V. Komornik, P. Loreti & M. Pedicini – « An approximation property of Pisot numbers », J. Number Theory80 (2000), p. 218–237. Zbl0962.11034MR1740512
  9. [9] T. van Ravenstein – « The three gap theorem (Steinhaus conjecture) », J. Austral. Math. Soc. Ser. A45 (1988), p. 360–370. Zbl0663.10039MR957201
  10. [10] W. Schmidt – Diophantine approximation, Lecture Notes in Math., vol. 785, Springer-Verlag, 1980. Zbl0421.10019MR568710

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.