Parallelepipeds, nilpotent groups and Gowers norms
Bulletin de la Société Mathématique de France (2008)
- Volume: 136, Issue: 3, page 405-437
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topHost, Bernard, and Kra, Bryna. "Parallelepipeds, nilpotent groups and Gowers norms." Bulletin de la Société Mathématique de France 136.3 (2008): 405-437. <http://eudml.org/doc/272478>.
@article{Host2008,
abstract = {In his proof of Szemerédi’s Theorem, Gowers introduced certain norms that are defined on a parallelepiped structure. A natural question is on which sets a parallelepiped structure (and thus a Gowers norm) can be defined. We focus on dimensions $2$ and $3$ and show when this possible, and describe a correspondence between the parallelepiped structures and nilpotent groups.},
author = {Host, Bernard, Kra, Bryna},
journal = {Bulletin de la Société Mathématique de France},
keywords = {parallelepiped; nilpotent group; Gowers norms},
language = {eng},
number = {3},
pages = {405-437},
publisher = {Société mathématique de France},
title = {Parallelepipeds, nilpotent groups and Gowers norms},
url = {http://eudml.org/doc/272478},
volume = {136},
year = {2008},
}
TY - JOUR
AU - Host, Bernard
AU - Kra, Bryna
TI - Parallelepipeds, nilpotent groups and Gowers norms
JO - Bulletin de la Société Mathématique de France
PY - 2008
PB - Société mathématique de France
VL - 136
IS - 3
SP - 405
EP - 437
AB - In his proof of Szemerédi’s Theorem, Gowers introduced certain norms that are defined on a parallelepiped structure. A natural question is on which sets a parallelepiped structure (and thus a Gowers norm) can be defined. We focus on dimensions $2$ and $3$ and show when this possible, and describe a correspondence between the parallelepiped structures and nilpotent groups.
LA - eng
KW - parallelepiped; nilpotent group; Gowers norms
UR - http://eudml.org/doc/272478
ER -
References
top- [1] N. Frantzikinakis, B. Host & B. Kra – « Multiple recurrence and convergence for sequences related to the prime numbers », J. reine angew. Math. 611 (2007), p. 131–144. Zbl1126.37005MR2361086
- [2] N. Frantzikinakis & B. Kra – « Convergence of multiple ergodic averages for some commuting transformations », Ergodic Theory Dynam. Systems25 (2005), p. 799–809. Zbl1140.37300MR2142946
- [3] H. Furstenberg – « Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions », J. Analyse Math.31 (1977), p. 204–256. Zbl0347.28016MR498471
- [4] W. T. Gowers – « A new proof of Szemerédi’s theorem », Geom. Funct. Anal.11 (2001), p. 465–588. Zbl1028.11005MR1844079
- [5] B. Green & T. Tao – « An inverse theorem for the Gowers norm », to appear in Proc. Edin. Math. Soc. Zbl1202.11013
- [6] —, « Linear equations in the primes », to appear in Ann. of Math.
- [7] —, « The primes contain arbitrarily long arithmetic progressions », Ann. of Math. 167 (2008). Zbl1191.11025MR2415379
- [8] P. Hall – « A contribution to the theory of groups of prime-power order », Proc. London Math. Soc. (2) 36 (1933), p. 29–95. Zbl0007.29102MR1575964
- [9] B. Host & B. Kra – « Convergence of polynomial ergodic averages », Israel J. Math. 149 (2005), p. 1–19, Probability in mathematics. Zbl1085.28009MR2191208
- [10] —, « Nonconventional ergodic averages and nilmanifolds », Ann. of Math. (2) 161 (2005), p. 397–488. Zbl1077.37002MR2150389
- [11] B. Host & A. Maass – « Nilsystèmes d’ordre deux et parallélépipèdes », to appear in Bull. Soc. Math. France. Zbl1217.37010MR2430186
- [12] M. Lazard – « Sur les groupes nilpotents et les anneaux de Lie », Ann. Sci. Ecole Norm. Sup. (3) 71 (1954), p. 101–190. Zbl0055.25103MR88496
- [13] A. Leibman – « Polynomial sequences in groups », J. Algebra201 (1998), p. 189–206. Zbl0908.20029MR1608723
- [14] —, « Polynomial mappings of groups », Israel J. Math.129 (2002), p. 29–60. Zbl1007.20035MR1910931
- [15] —, « Convergence of multiple ergodic averages along polynomials of several variables », Israel J. Math.146 (2005), p. 303–315. Zbl1080.37002MR2151605
- [16] J. Petresco – « Sur les commutateurs », Math. Z.61 (1954), p. 348–356. Zbl0056.25505MR66380
- [17] E. Szemerédi – « On sets of integers containing no elements in arithmetic progression », Acta Arith. 27 (1975), p. 199–245, Collection of articles in memory of Juriĭ Vladimirovič Linnik. Zbl0303.10056MR369312
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.