Parallelepipeds, nilpotent groups and Gowers norms

Bernard Host; Bryna Kra

Bulletin de la Société Mathématique de France (2008)

  • Volume: 136, Issue: 3, page 405-437
  • ISSN: 0037-9484

Abstract

top
In his proof of Szemerédi’s Theorem, Gowers introduced certain norms that are defined on a parallelepiped structure. A natural question is on which sets a parallelepiped structure (and thus a Gowers norm) can be defined. We focus on dimensions 2 and 3 and show when this possible, and describe a correspondence between the parallelepiped structures and nilpotent groups.

How to cite

top

Host, Bernard, and Kra, Bryna. "Parallelepipeds, nilpotent groups and Gowers norms." Bulletin de la Société Mathématique de France 136.3 (2008): 405-437. <http://eudml.org/doc/272478>.

@article{Host2008,
abstract = {In his proof of Szemerédi’s Theorem, Gowers introduced certain norms that are defined on a parallelepiped structure. A natural question is on which sets a parallelepiped structure (and thus a Gowers norm) can be defined. We focus on dimensions $2$ and $3$ and show when this possible, and describe a correspondence between the parallelepiped structures and nilpotent groups.},
author = {Host, Bernard, Kra, Bryna},
journal = {Bulletin de la Société Mathématique de France},
keywords = {parallelepiped; nilpotent group; Gowers norms},
language = {eng},
number = {3},
pages = {405-437},
publisher = {Société mathématique de France},
title = {Parallelepipeds, nilpotent groups and Gowers norms},
url = {http://eudml.org/doc/272478},
volume = {136},
year = {2008},
}

TY - JOUR
AU - Host, Bernard
AU - Kra, Bryna
TI - Parallelepipeds, nilpotent groups and Gowers norms
JO - Bulletin de la Société Mathématique de France
PY - 2008
PB - Société mathématique de France
VL - 136
IS - 3
SP - 405
EP - 437
AB - In his proof of Szemerédi’s Theorem, Gowers introduced certain norms that are defined on a parallelepiped structure. A natural question is on which sets a parallelepiped structure (and thus a Gowers norm) can be defined. We focus on dimensions $2$ and $3$ and show when this possible, and describe a correspondence between the parallelepiped structures and nilpotent groups.
LA - eng
KW - parallelepiped; nilpotent group; Gowers norms
UR - http://eudml.org/doc/272478
ER -

References

top
  1. [1] N. Frantzikinakis, B. Host & B. Kra – « Multiple recurrence and convergence for sequences related to the prime numbers », J. reine angew. Math. 611 (2007), p. 131–144. Zbl1126.37005MR2361086
  2. [2] N. Frantzikinakis & B. Kra – « Convergence of multiple ergodic averages for some commuting transformations », Ergodic Theory Dynam. Systems25 (2005), p. 799–809. Zbl1140.37300MR2142946
  3. [3] H. Furstenberg – « Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions », J. Analyse Math.31 (1977), p. 204–256. Zbl0347.28016MR498471
  4. [4] W. T. Gowers – « A new proof of Szemerédi’s theorem », Geom. Funct. Anal.11 (2001), p. 465–588. Zbl1028.11005MR1844079
  5. [5] B. Green & T. Tao – « An inverse theorem for the Gowers U 3 norm », to appear in Proc. Edin. Math. Soc. Zbl1202.11013
  6. [6] —, « Linear equations in the primes », to appear in Ann. of Math. 
  7. [7] —, « The primes contain arbitrarily long arithmetic progressions », Ann. of Math. 167 (2008). Zbl1191.11025MR2415379
  8. [8] P. Hall – « A contribution to the theory of groups of prime-power order », Proc. London Math. Soc. (2) 36 (1933), p. 29–95. Zbl0007.29102MR1575964
  9. [9] B. Host & B. Kra – « Convergence of polynomial ergodic averages », Israel J. Math. 149 (2005), p. 1–19, Probability in mathematics. Zbl1085.28009MR2191208
  10. [10] —, « Nonconventional ergodic averages and nilmanifolds », Ann. of Math. (2) 161 (2005), p. 397–488. Zbl1077.37002MR2150389
  11. [11] B. Host & A. Maass – « Nilsystèmes d’ordre deux et parallélépipèdes », to appear in Bull. Soc. Math. France. Zbl1217.37010MR2430186
  12. [12] M. Lazard – « Sur les groupes nilpotents et les anneaux de Lie », Ann. Sci. Ecole Norm. Sup. (3) 71 (1954), p. 101–190. Zbl0055.25103MR88496
  13. [13] A. Leibman – « Polynomial sequences in groups », J. Algebra201 (1998), p. 189–206. Zbl0908.20029MR1608723
  14. [14] —, « Polynomial mappings of groups », Israel J. Math.129 (2002), p. 29–60. Zbl1007.20035MR1910931
  15. [15] —, « Convergence of multiple ergodic averages along polynomials of several variables », Israel J. Math.146 (2005), p. 303–315. Zbl1080.37002MR2151605
  16. [16] J. Petresco – « Sur les commutateurs », Math. Z.61 (1954), p. 348–356. Zbl0056.25505MR66380
  17. [17] E. Szemerédi – « On sets of integers containing no k elements in arithmetic progression », Acta Arith. 27 (1975), p. 199–245, Collection of articles in memory of Juriĭ Vladimirovič Linnik. Zbl0303.10056MR369312

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.