Characterization of cycle domains via Kobayashi hyperbolicity
Bulletin de la Société Mathématique de France (2005)
- Volume: 133, Issue: 1, page 121-144
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topFels, Gregor, and Huckleberry, Alan. "Characterization of cycle domains via Kobayashi hyperbolicity." Bulletin de la Société Mathématique de France 133.1 (2005): 121-144. <http://eudml.org/doc/272479>.
@article{Fels2005,
abstract = {A real form $G$ of a complex semi-simple Lie group $G^\mathbb \{C\}$ has only finitely many orbits in any given $G^\mathbb \{C\}$-flag manifold $Z=G^\mathbb \{C\}/Q$. The complex geometry of these orbits is of interest, e.g., for the associated representation theory. The open orbits $D$ generally possess only the constant holomorphic functions, and the relevant associated geometric objects are certain positive-dimensional compact complex submanifolds of $D$ which, with very few well-understood exceptions, are parameterized by the Wolf cycle domains $\Omega _W(D)$ in $G^\mathbb \{C\}/K^\mathbb \{C\}$, where $K$ is a maximal compact subgroup of $G$. Thus, for the various domains $D$ in the various ambient spaces $Z$, it is possible to compare the cycle spaces $\Omega _W(D)$.
The main result here is that, with the few exceptions mentioned above, for a fixed real form $G$ all of the cycle spaces $\Omega _W(D)$ are the same. They are equal to a universal domain $\Omega _\{AG\}$ which is natural from the the point of view of group actions and which, in essence, can be explicitly computed.
The essential technical result is that if $\widehat\{\Omega \}$ is a $G$-invariant Stein domain which contains $\Omega _\{AG\}$ and which is Kobayashi hyperbolic, then $\widehat\{\Omega \}=\Omega _\{AG\}$. The equality of the cycle domains follows from the fact that every $\Omega _W(D)$ is itself Stein, is hyperbolic, and contains $\Omega _\{AG\}$.},
author = {Fels, Gregor, Huckleberry, Alan},
journal = {Bulletin de la Société Mathématique de France},
keywords = {complex geometry; cycles spaces; Lie groups; Schubert varieties},
language = {eng},
number = {1},
pages = {121-144},
publisher = {Société mathématique de France},
title = {Characterization of cycle domains via Kobayashi hyperbolicity},
url = {http://eudml.org/doc/272479},
volume = {133},
year = {2005},
}
TY - JOUR
AU - Fels, Gregor
AU - Huckleberry, Alan
TI - Characterization of cycle domains via Kobayashi hyperbolicity
JO - Bulletin de la Société Mathématique de France
PY - 2005
PB - Société mathématique de France
VL - 133
IS - 1
SP - 121
EP - 144
AB - A real form $G$ of a complex semi-simple Lie group $G^\mathbb {C}$ has only finitely many orbits in any given $G^\mathbb {C}$-flag manifold $Z=G^\mathbb {C}/Q$. The complex geometry of these orbits is of interest, e.g., for the associated representation theory. The open orbits $D$ generally possess only the constant holomorphic functions, and the relevant associated geometric objects are certain positive-dimensional compact complex submanifolds of $D$ which, with very few well-understood exceptions, are parameterized by the Wolf cycle domains $\Omega _W(D)$ in $G^\mathbb {C}/K^\mathbb {C}$, where $K$ is a maximal compact subgroup of $G$. Thus, for the various domains $D$ in the various ambient spaces $Z$, it is possible to compare the cycle spaces $\Omega _W(D)$.
The main result here is that, with the few exceptions mentioned above, for a fixed real form $G$ all of the cycle spaces $\Omega _W(D)$ are the same. They are equal to a universal domain $\Omega _{AG}$ which is natural from the the point of view of group actions and which, in essence, can be explicitly computed.
The essential technical result is that if $\widehat{\Omega }$ is a $G$-invariant Stein domain which contains $\Omega _{AG}$ and which is Kobayashi hyperbolic, then $\widehat{\Omega }=\Omega _{AG}$. The equality of the cycle domains follows from the fact that every $\Omega _W(D)$ is itself Stein, is hyperbolic, and contains $\Omega _{AG}$.
LA - eng
KW - complex geometry; cycles spaces; Lie groups; Schubert varieties
UR - http://eudml.org/doc/272479
ER -
References
top- [1] D. Akhiezer & S. Gindikin – « On the Stein extensions of real symmetric spaces », Math. Ann.286 (1990), p. 1–12. Zbl0681.32022MR1032920
- [2] L. Barchini – « Stein extensions of real symmetric spaces and the geometry of the flag manifold », Math. Ann.326 (2003), p. 331–346. Zbl1029.22011MR1990913
- [3] L. Barchini, S. Gindikin & H. Wong – « Geometry of flag manifolds and holomorphic extensions of Szegö kernels for », Pacific J. Math.179 (1997), p. 201–220. Zbl0890.22010MR1452532
- [4] L. Barchini, C. Leslie & R. Zierau – « Domains of holomorphy and representations of », Manuscripta Math. 6 (2001), no. 4, p. 411–427. Zbl0994.22009MR1875341
- [5] D. Barlet & V. Koziarz – « Fonctions holomorphes sur l’espace des cycles: la méthode d’intersection », Math. Research Letters7 (2000), p. 537–550. Zbl0978.32009MR1809281
- [6] D. Barlet & J. Magnusson – « Intégration de classes de cohomologie méromorphes et diviseurs d’incidence », Ann. Sci. École Norm. Sup.31 (1998), p. 811–842. Zbl0963.32019MR1664218
- [7] D. Birkes – « Orbits of linear algebraic groups », Ann. of Math. 93 (1971), no. 2, p. 459–475. Zbl0212.36402MR296077
- [8] R. Bremigan – « Quotients for algebraic group actions over non-algebraically closed fields », J. reine angew. Math. 453 (1994), p. 21–47. Zbl0808.14040MR1285780
- [9] D. Burns, S. Halverscheid & R. Hind – « The geometry of Grauert tubes and complexification of symmetric spaces », Duke J. Math.118 (2003), p. 465–491. Zbl1044.53039MR1983038
- [10] R. Crittenden – « Minimum and conjugate points in symmetric spaces », Canad. J. Math.14 (1962), p. 320–328. Zbl0105.34801MR137077
- [11] H. Dufresnoy – « Théorie nouvelle des familles complexes normales. Application à l’étude des fonctions algébroïdes », Ann. Sci. École Norm. Sup.61 (1944), p. 1–44. Zbl0061.15205MR14469
- [12] E. Dunne & R. Zierau – « Twistor theory for indefinite Kähler symmetric spaces », Contemp. Math.154 (1993), p. 117–132. Zbl0798.53066MR1246381
- [13] J. Faraut – « Fonctions sphériques sur un espace symétrique ordonné de type Cayley », Representation theory and harmonic analysis (Cincinnati, OH, 1994), vol. 191, 1995, p. 41–55. Zbl0847.53039MR1365533
- [14] G. Fels – « A note on homogeneous locally symmetric spaces », Transform. Groups2 (1997), p. 269–277. Zbl0901.53039MR1466695
- [15] G. Gindikin – « Tube domains in Stein symmetric spaces », Positivity in Lie theory: Open problems, W. de Gruyter, 1998, p. 81–98. Zbl0907.22018MR1648697
- [16] S. Gindikin & T. Matsuki – « Stein extensions of Riemann symmetric spaces and dualities of orbits on flag manifolds », MSRI-Preprint 2001-028. Zbl1043.22007MR2015255
- [17] G. Heier – « Die komplexe Geometrie des Periodengebietes der K3-Flächen », Diplomarbeit, Ruhr-Universität Bochum, 1999.
- [18] P. Heinzner – « Equivariant holomorphic extensions of real-analytic manifolds », Bull. Soc. Math. France121 (1993), p. 101–119. Zbl0794.32022MR1242639
- [19] P. Heinzner, A. Huckleberry & F. Kutzschebauch – « A real analytic version of Abels’ Theorem and complexifications of proper Lie group actions », Complex Analysis and Geometry, Lecture Notes in Pure and Applied Mathematics, Marcel Decker, 1995, p. 229–273. Zbl0861.32011MR1365977
- [20] A. Huckleberry – « On certain domains in cycle spaces of flag manifolds », Math. Ann.323 (2002), p. 797–810. Zbl1026.32045MR1924279
- [21] A. Huckleberry & A. Simon – « On cycle spaces of flag domains of », J. reine angew. Math. 541 (2001), p. 171–208. Zbl0983.32013MR1876289
- [22] A. Huckleberry & J. Wolf – « Cycle spaces of real forms of », Complex Geometry: A Collection of Papers Dedicated to Hans Grauert’, Springer-Verlag, 2002, to appear. Zbl1015.32011MR1922101
- [23] —, « Schubert varieties and cycle spaces », Duke J. Math.120 (2003), p. 229–249. Zbl1048.32005MR2019975
- [24] J. Humphreys – Linear algebraic groups, Graduate Text in Math., vol. 21, Springer, 1975. Zbl0325.20039MR396773
- [25] S. Kobayashi – Hyperbolic complex spaces, vol. 318, Springer, 1998. Zbl0917.32019MR1635983
- [26] B. Kostant & S. Rallis – « Orbits and representations associated with symmetric spaces », Amer. J. Math.93 (1971), p. 753–809. Zbl0224.22013MR311837
- [27] B. Krötz & R. Stanton – « Holomorphic extensions of representations, I and II, automorphic functions », preprints. Zbl1053.22009
- [28] F. Kutzschebauch – Eigentliche Wirkungen von Liegruppen auf reell-analytischen Mannigfaltigkeiten, Schriftenreihe des Graduiertenkollegs Geometrie und Mathematische Physik, vol. 5, Ruhr-Universität Bochum, 1994. Zbl0840.22017
- [29] T. Matsuki – « The orbits of affine symmetric spaces under the action of minimal parabolic subgroups », J. Math. Soc. Japan312 (1979), p. 331–357. Zbl0396.53025MR527548
- [30] —, « Double coset decompositions of redutive Lie groups arising from two involutions », J. Alg.197 (1997), p. 49–91. Zbl0887.22009MR1480777
- [31] —, Preprint.
- [32] J. Novak – « Parameterizing maximal compact subvarieties », Proc. Amer. Math. Soc.124 (1996), p. 969–975. Zbl0852.22014MR1301042
- [33] G. Ólafsson – « Analytic continuation in representation theory and harmonic analysis », Global analysis and harmonic analysis (Marseille-Luminy, 1999), Séminaires & Congrès, vol. 4, Soc. Math. France, 2000, p. 201–233. Zbl0999.22017MR1822362
- [34] G. Ólafsson & B. Œrsted – « Analytic continuation of Flensted-Jensen representations », Manuscripta Math. 74 (1992), no. 1, p. 5–23. Zbl0767.22004MR1141773
- [35] A. Onishchik – Topology of Transitive Transformation Groups, Johann Ambrosius Barth, Leipzig Berlin, 1994. Zbl0796.57001MR1266842
- [36] C. Patton & H. Rossi – « Unitary structures on cohomology », Trans. Amer. Math. Soc.290 (1985), p. 235–258. Zbl0591.22006MR787963
- [37] G. Schwarz – « Lifting smooth homotopies of orbit spaces », Inst. Hautes Études Sci. Publ. Math.50 (1980), p. 37–135. Zbl0449.57009MR573821
- [38] —, « The topology of algebraic quotients », Topological methods in algebraic transformation groups (New Brunswick, NJ, 1988), Progr. Math., vol. 80, Birkhäuser, 1989, p. 135–151. Zbl0708.14034MR1040861
- [39] R. Wells – « Parameterizing the compact submanifolds of a period matrix domain by a Stein manifold », Symposium on Several Complex Variables, Lecture Notes in Math., vol. 184, Springer, 1971, p. 121–150. Zbl0216.33002MR308441
- [40] J. Wolf – « The action of a real semi-simple group on a complex flag manifold, I: Orbit structure and holomorphic arc components », Bull. Amer. Math. Soc.75 (1969), p. 1121–1237. Zbl0183.50901MR251246
- [41] —, « The Stein condition for cycle spaces of open orbits on complex flag manifolds », Ann. of Math.136 (1992), p. 541–555. Zbl0771.32016MR1189864
- [42] —, « Real groups transitive on complex flag manifolds », Proc. Amer. Math. Soc.129 (2001), p. 2483–2487. Zbl0968.22006MR1823935
- [43] J. Wolf & R. Zierau – « Linear cycle spaces in flag domains », Math. Ann. 316 (2000), no. 3, p. 529–545. Zbl0963.32015MR1752783
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.