Characterization of cycle domains via Kobayashi hyperbolicity

Gregor Fels; Alan Huckleberry

Bulletin de la Société Mathématique de France (2005)

  • Volume: 133, Issue: 1, page 121-144
  • ISSN: 0037-9484

Abstract

top
A real form G of a complex semi-simple Lie group G has only finitely many orbits in any given G -flag manifold Z = G / Q . The complex geometry of these orbits is of interest, e.g., for the associated representation theory. The open orbits D generally possess only the constant holomorphic functions, and the relevant associated geometric objects are certain positive-dimensional compact complex submanifolds of D which, with very few well-understood exceptions, are parameterized by the Wolf cycle domains Ω W ( D ) in G / K , where K is a maximal compact subgroup of G . Thus, for the various domains D in the various ambient spaces Z , it is possible to compare the cycle spaces Ω W ( D ) . The main result here is that, with the few exceptions mentioned above, for a fixed real form G all of the cycle spaces Ω W ( D ) are the same. They are equal to a universal domain Ω A G which is natural from the the point of view of group actions and which, in essence, can be explicitly computed. The essential technical result is that if Ω ^ is a G -invariant Stein domain which contains Ω A G and which is Kobayashi hyperbolic, then Ω ^ = Ω A G . The equality of the cycle domains follows from the fact that every Ω W ( D ) is itself Stein, is hyperbolic, and contains Ω A G .

How to cite

top

Fels, Gregor, and Huckleberry, Alan. "Characterization of cycle domains via Kobayashi hyperbolicity." Bulletin de la Société Mathématique de France 133.1 (2005): 121-144. <http://eudml.org/doc/272479>.

@article{Fels2005,
abstract = {A real form $G$ of a complex semi-simple Lie group $G^\mathbb \{C\}$ has only finitely many orbits in any given $G^\mathbb \{C\}$-flag manifold $Z=G^\mathbb \{C\}/Q$. The complex geometry of these orbits is of interest, e.g., for the associated representation theory. The open orbits $D$ generally possess only the constant holomorphic functions, and the relevant associated geometric objects are certain positive-dimensional compact complex submanifolds of $D$ which, with very few well-understood exceptions, are parameterized by the Wolf cycle domains $\Omega _W(D)$ in $G^\mathbb \{C\}/K^\mathbb \{C\}$, where $K$ is a maximal compact subgroup of $G$. Thus, for the various domains $D$ in the various ambient spaces $Z$, it is possible to compare the cycle spaces $\Omega _W(D)$. The main result here is that, with the few exceptions mentioned above, for a fixed real form $G$ all of the cycle spaces $\Omega _W(D)$ are the same. They are equal to a universal domain $\Omega _\{AG\}$ which is natural from the the point of view of group actions and which, in essence, can be explicitly computed. The essential technical result is that if $\widehat\{\Omega \}$ is a $G$-invariant Stein domain which contains $\Omega _\{AG\}$ and which is Kobayashi hyperbolic, then $\widehat\{\Omega \}=\Omega _\{AG\}$. The equality of the cycle domains follows from the fact that every $\Omega _W(D)$ is itself Stein, is hyperbolic, and contains $\Omega _\{AG\}$.},
author = {Fels, Gregor, Huckleberry, Alan},
journal = {Bulletin de la Société Mathématique de France},
keywords = {complex geometry; cycles spaces; Lie groups; Schubert varieties},
language = {eng},
number = {1},
pages = {121-144},
publisher = {Société mathématique de France},
title = {Characterization of cycle domains via Kobayashi hyperbolicity},
url = {http://eudml.org/doc/272479},
volume = {133},
year = {2005},
}

TY - JOUR
AU - Fels, Gregor
AU - Huckleberry, Alan
TI - Characterization of cycle domains via Kobayashi hyperbolicity
JO - Bulletin de la Société Mathématique de France
PY - 2005
PB - Société mathématique de France
VL - 133
IS - 1
SP - 121
EP - 144
AB - A real form $G$ of a complex semi-simple Lie group $G^\mathbb {C}$ has only finitely many orbits in any given $G^\mathbb {C}$-flag manifold $Z=G^\mathbb {C}/Q$. The complex geometry of these orbits is of interest, e.g., for the associated representation theory. The open orbits $D$ generally possess only the constant holomorphic functions, and the relevant associated geometric objects are certain positive-dimensional compact complex submanifolds of $D$ which, with very few well-understood exceptions, are parameterized by the Wolf cycle domains $\Omega _W(D)$ in $G^\mathbb {C}/K^\mathbb {C}$, where $K$ is a maximal compact subgroup of $G$. Thus, for the various domains $D$ in the various ambient spaces $Z$, it is possible to compare the cycle spaces $\Omega _W(D)$. The main result here is that, with the few exceptions mentioned above, for a fixed real form $G$ all of the cycle spaces $\Omega _W(D)$ are the same. They are equal to a universal domain $\Omega _{AG}$ which is natural from the the point of view of group actions and which, in essence, can be explicitly computed. The essential technical result is that if $\widehat{\Omega }$ is a $G$-invariant Stein domain which contains $\Omega _{AG}$ and which is Kobayashi hyperbolic, then $\widehat{\Omega }=\Omega _{AG}$. The equality of the cycle domains follows from the fact that every $\Omega _W(D)$ is itself Stein, is hyperbolic, and contains $\Omega _{AG}$.
LA - eng
KW - complex geometry; cycles spaces; Lie groups; Schubert varieties
UR - http://eudml.org/doc/272479
ER -

References

top
  1. [1] D. Akhiezer & S. Gindikin – « On the Stein extensions of real symmetric spaces », Math. Ann.286 (1990), p. 1–12. Zbl0681.32022MR1032920
  2. [2] L. Barchini – « Stein extensions of real symmetric spaces and the geometry of the flag manifold », Math. Ann.326 (2003), p. 331–346. Zbl1029.22011MR1990913
  3. [3] L. Barchini, S. Gindikin & H. Wong – « Geometry of flag manifolds and holomorphic extensions of Szegö kernels for SU ( p , q ) », Pacific J. Math.179 (1997), p. 201–220. Zbl0890.22010MR1452532
  4. [4] L. Barchini, C. Leslie & R. Zierau – « Domains of holomorphy and representations of Sl ( n , ) », Manuscripta Math. 6 (2001), no. 4, p. 411–427. Zbl0994.22009MR1875341
  5. [5] D. Barlet & V. Koziarz – « Fonctions holomorphes sur l’espace des cycles: la méthode d’intersection », Math. Research Letters7 (2000), p. 537–550. Zbl0978.32009MR1809281
  6. [6] D. Barlet & J. Magnusson – « Intégration de classes de cohomologie méromorphes et diviseurs d’incidence », Ann. Sci. École Norm. Sup.31 (1998), p. 811–842. Zbl0963.32019MR1664218
  7. [7] D. Birkes – « Orbits of linear algebraic groups », Ann. of Math. 93 (1971), no. 2, p. 459–475. Zbl0212.36402MR296077
  8. [8] R. Bremigan – « Quotients for algebraic group actions over non-algebraically closed fields », J. reine angew. Math. 453 (1994), p. 21–47. Zbl0808.14040MR1285780
  9. [9] D. Burns, S. Halverscheid & R. Hind – « The geometry of Grauert tubes and complexification of symmetric spaces », Duke J. Math.118 (2003), p. 465–491. Zbl1044.53039MR1983038
  10. [10] R. Crittenden – « Minimum and conjugate points in symmetric spaces », Canad. J. Math.14 (1962), p. 320–328. Zbl0105.34801MR137077
  11. [11] H. Dufresnoy – « Théorie nouvelle des familles complexes normales. Application à l’étude des fonctions algébroïdes », Ann. Sci. École Norm. Sup.61 (1944), p. 1–44. Zbl0061.15205MR14469
  12. [12] E. Dunne & R. Zierau – « Twistor theory for indefinite Kähler symmetric spaces », Contemp. Math.154 (1993), p. 117–132. Zbl0798.53066MR1246381
  13. [13] J. Faraut – « Fonctions sphériques sur un espace symétrique ordonné de type Cayley », Representation theory and harmonic analysis (Cincinnati, OH, 1994), vol. 191, 1995, p. 41–55. Zbl0847.53039MR1365533
  14. [14] G. Fels – « A note on homogeneous locally symmetric spaces », Transform. Groups2 (1997), p. 269–277. Zbl0901.53039MR1466695
  15. [15] G. Gindikin – « Tube domains in Stein symmetric spaces », Positivity in Lie theory: Open problems, W. de Gruyter, 1998, p. 81–98. Zbl0907.22018MR1648697
  16. [16] S. Gindikin & T. Matsuki – « Stein extensions of Riemann symmetric spaces and dualities of orbits on flag manifolds », MSRI-Preprint 2001-028. Zbl1043.22007MR2015255
  17. [17] G. Heier – « Die komplexe Geometrie des Periodengebietes der K3-Flächen », Diplomarbeit, Ruhr-Universität Bochum, 1999. 
  18. [18] P. Heinzner – « Equivariant holomorphic extensions of real-analytic manifolds », Bull. Soc. Math. France121 (1993), p. 101–119. Zbl0794.32022MR1242639
  19. [19] P. Heinzner, A. Huckleberry & F. Kutzschebauch – « A real analytic version of Abels’ Theorem and complexifications of proper Lie group actions », Complex Analysis and Geometry, Lecture Notes in Pure and Applied Mathematics, Marcel Decker, 1995, p. 229–273. Zbl0861.32011MR1365977
  20. [20] A. Huckleberry – « On certain domains in cycle spaces of flag manifolds », Math. Ann.323 (2002), p. 797–810. Zbl1026.32045MR1924279
  21. [21] A. Huckleberry & A. Simon – « On cycle spaces of flag domains of SL n ( ) », J. reine angew. Math. 541 (2001), p. 171–208. Zbl0983.32013MR1876289
  22. [22] A. Huckleberry & J. Wolf – « Cycle spaces of real forms of SL n ( ) », Complex Geometry: A Collection of Papers Dedicated to Hans Grauert’, Springer-Verlag, 2002, to appear. Zbl1015.32011MR1922101
  23. [23] —, « Schubert varieties and cycle spaces », Duke J. Math.120 (2003), p. 229–249. Zbl1048.32005MR2019975
  24. [24] J. Humphreys – Linear algebraic groups, Graduate Text in Math., vol. 21, Springer, 1975. Zbl0325.20039MR396773
  25. [25] S. Kobayashi – Hyperbolic complex spaces, vol. 318, Springer, 1998. Zbl0917.32019MR1635983
  26. [26] B. Kostant & S. Rallis – « Orbits and representations associated with symmetric spaces », Amer. J. Math.93 (1971), p. 753–809. Zbl0224.22013MR311837
  27. [27] B. Krötz & R. Stanton – « Holomorphic extensions of representations, I and II, automorphic functions », preprints. Zbl1053.22009
  28. [28] F. Kutzschebauch – Eigentliche Wirkungen von Liegruppen auf reell-analytischen Mannigfaltigkeiten, Schriftenreihe des Graduiertenkollegs Geometrie und Mathematische Physik, vol. 5, Ruhr-Universität Bochum, 1994. Zbl0840.22017
  29. [29] T. Matsuki – « The orbits of affine symmetric spaces under the action of minimal parabolic subgroups », J. Math. Soc. Japan312 (1979), p. 331–357. Zbl0396.53025MR527548
  30. [30] —, « Double coset decompositions of redutive Lie groups arising from two involutions », J. Alg.197 (1997), p. 49–91. Zbl0887.22009MR1480777
  31. [31] —, Preprint. 
  32. [32] J. Novak – « Parameterizing maximal compact subvarieties », Proc. Amer. Math. Soc.124 (1996), p. 969–975. Zbl0852.22014MR1301042
  33. [33] G. Ólafsson – « Analytic continuation in representation theory and harmonic analysis », Global analysis and harmonic analysis (Marseille-Luminy, 1999), Séminaires & Congrès, vol. 4, Soc. Math. France, 2000, p. 201–233. Zbl0999.22017MR1822362
  34. [34] G. Ólafsson & B. Œrsted – « Analytic continuation of Flensted-Jensen representations », Manuscripta Math. 74 (1992), no. 1, p. 5–23. Zbl0767.22004MR1141773
  35. [35] A. Onishchik – Topology of Transitive Transformation Groups, Johann Ambrosius Barth, Leipzig Berlin, 1994. Zbl0796.57001MR1266842
  36. [36] C. Patton & H. Rossi – « Unitary structures on cohomology », Trans. Amer. Math. Soc.290 (1985), p. 235–258. Zbl0591.22006MR787963
  37. [37] G. Schwarz – « Lifting smooth homotopies of orbit spaces », Inst. Hautes Études Sci. Publ. Math.50 (1980), p. 37–135. Zbl0449.57009MR573821
  38. [38] —, « The topology of algebraic quotients », Topological methods in algebraic transformation groups (New Brunswick, NJ, 1988), Progr. Math., vol. 80, Birkhäuser, 1989, p. 135–151. Zbl0708.14034MR1040861
  39. [39] R. Wells – « Parameterizing the compact submanifolds of a period matrix domain by a Stein manifold », Symposium on Several Complex Variables, Lecture Notes in Math., vol. 184, Springer, 1971, p. 121–150. Zbl0216.33002MR308441
  40. [40] J. Wolf – « The action of a real semi-simple group on a complex flag manifold, I: Orbit structure and holomorphic arc components », Bull. Amer. Math. Soc.75 (1969), p. 1121–1237. Zbl0183.50901MR251246
  41. [41] —, « The Stein condition for cycle spaces of open orbits on complex flag manifolds », Ann. of Math.136 (1992), p. 541–555. Zbl0771.32016MR1189864
  42. [42] —, « Real groups transitive on complex flag manifolds », Proc. Amer. Math. Soc.129 (2001), p. 2483–2487. Zbl0968.22006MR1823935
  43. [43] J. Wolf & R. Zierau – « Linear cycle spaces in flag domains », Math. Ann. 316 (2000), no. 3, p. 529–545. Zbl0963.32015MR1752783

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.