Remarks on Yu’s ‘property A’ for discrete metric spaces and groups

Jean-Louis Tu

Bulletin de la Société Mathématique de France (2001)

  • Volume: 129, Issue: 1, page 115-139
  • ISSN: 0037-9484

Abstract

top
Guoliang Yu has introduced a property on discrete metric spaces and groups, which is a weak form of amenability and which has important applications to the Novikov conjecture and the coarse Baum–Connes conjecture. The aim of the present paper is to prove that property in particular examples, like spaces with subexponential growth, amalgamated free products of discrete groups having property A and HNN extensions of discrete groups having property A.

How to cite

top

Tu, Jean-Louis. "Remarks on Yu’s ‘property A’ for discrete metric spaces and groups." Bulletin de la Société Mathématique de France 129.1 (2001): 115-139. <http://eudml.org/doc/272492>.

@article{Tu2001,
abstract = {Guoliang Yu has introduced a property on discrete metric spaces and groups, which is a weak form of amenability and which has important applications to the Novikov conjecture and the coarse Baum–Connes conjecture. The aim of the present paper is to prove that property in particular examples, like spaces with subexponential growth, amalgamated free products of discrete groups having property A and HNN extensions of discrete groups having property A.},
author = {Tu, Jean-Louis},
journal = {Bulletin de la Société Mathématique de France},
keywords = {metric spaces; Novikov conjecture; coarse Baum–Connes conjecture},
language = {eng},
number = {1},
pages = {115-139},
publisher = {Société mathématique de France},
title = {Remarks on Yu’s ‘property A’ for discrete metric spaces and groups},
url = {http://eudml.org/doc/272492},
volume = {129},
year = {2001},
}

TY - JOUR
AU - Tu, Jean-Louis
TI - Remarks on Yu’s ‘property A’ for discrete metric spaces and groups
JO - Bulletin de la Société Mathématique de France
PY - 2001
PB - Société mathématique de France
VL - 129
IS - 1
SP - 115
EP - 139
AB - Guoliang Yu has introduced a property on discrete metric spaces and groups, which is a weak form of amenability and which has important applications to the Novikov conjecture and the coarse Baum–Connes conjecture. The aim of the present paper is to prove that property in particular examples, like spaces with subexponential growth, amalgamated free products of discrete groups having property A and HNN extensions of discrete groups having property A.
LA - eng
KW - metric spaces; Novikov conjecture; coarse Baum–Connes conjecture
UR - http://eudml.org/doc/272492
ER -

References

top
  1. [1] J. M. Alonso & M. R. Bridson – « Semihyperbolic groups », Proc. London Math. Soc. (3) 70 (1995), no. 1, p. 56–114. Zbl0823.20035MR1300841
  2. [2] C. Anantharaman-Delaroche & J. Renault – Amenable groupoids, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 36, L’Enseignement Mathématique, Geneva, 2000, With a foreword by Georges Skandalis and Appendix B by E. Germain. Zbl0960.43003MR1799683
  3. [3] P. Baum, A. Connes & N. Higson – « Classifying space for proper actions and K -theory of group C * -algebras », C * -algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, p. 240–291. Zbl0830.46061MR1292018
  4. [4] J. Dixmier – c * -algebras, North-Holland Mathematical Library, 1982. Zbl0657.46040MR458185
  5. [5] P. Eymard – Moyennes invariantes et représentations unitaires, Lecture Notes in Mathematics, Vol. 300, Springer-Verlag, Berlin, 1972. Zbl0249.43004MR447969
  6. [6] É. Ghys & P. de la Harpe – « Espaces métriques hyperboliques », Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988), Progr. Math., vol. 83, Birkhäuser Boston, Boston, MA, 1990, p. 27–45. Zbl0731.20025MR1086648
  7. [7] G. Gong & G. Yu – « Volume growth and positive scalar curvature », Geom. Funct. Anal. 10 (2000), no. 4, p. 821–828. Zbl0979.53033MR1791141
  8. [8] M. Gromov – « Asymptotic invariants of infinite groups », Geometric group theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, p. 1–295. Zbl0841.20039MR1253544
  9. [9] —, « Spaces and questions », Geom. Funct. Anal. (2000), no. Special Volume, Part I, p. 118–161, GAFA 2000 (Tel Aviv, 1999). MR1826251
  10. [10] P. de la Harpe & A. Valette – « La propriété ( T ) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger) », Astérisque (1989), no. 175, p. 158, With an appendix by M. Burger. Zbl0759.22001MR1023471
  11. [11] N. Higson – « Bivariant K -theory and the Novikov conjecture », Geom. Funct. Anal. 10 (2000), no. 3, p. 563–581. Zbl0962.46052MR1779613
  12. [12] N. Higson & J. Roe – « Amenable group actions and the Novikov conjecture », J. Reine Angew. Math.519 (2000), p. 143–153. Zbl0964.55015MR1739727
  13. [13] J. Roe – Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, vol. 90, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1996. Zbl0853.58003MR1399087
  14. [14] P. Scott & T. Wall – « Topological methods in group theory », Homological group theory (Proc. Sympos., Durham, 1977), London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge, 1979, p. 137–203. Zbl0423.20023MR564422
  15. [15] J.-P. Serre – Trees, Springer-Verlag, Berlin, 1980, Translated from the French by John Stillwell. Zbl0548.20018MR1954121
  16. [16] G. Skandalis, J. L. Tu & G. Yu – « The coarse Baum-Connes conjecture and groupoids », Topology 41 (2002), no. 4, p. 807–834. Zbl1033.19003MR1905840
  17. [17] S. Wassermann – Exact C * -algebras and related topics, Lecture Notes Series, vol. 19, Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 1994. Zbl0828.46054MR1271145
  18. [18] G. Yu – « Coarse Baum-Connes conjecture », K -Theory 9 (1995), no. 3, p. 199–221. Zbl0829.19004MR1344138
  19. [19] —, « The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space », Invent. Math. 139 (2000), no. 1, p. 201–240. Zbl0956.19004MR1728880

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.