Remarks on Yu’s ‘property A’ for discrete metric spaces and groups
Bulletin de la Société Mathématique de France (2001)
- Volume: 129, Issue: 1, page 115-139
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topTu, Jean-Louis. "Remarks on Yu’s ‘property A’ for discrete metric spaces and groups." Bulletin de la Société Mathématique de France 129.1 (2001): 115-139. <http://eudml.org/doc/272492>.
@article{Tu2001,
abstract = {Guoliang Yu has introduced a property on discrete metric spaces and groups, which is a weak form of amenability and which has important applications to the Novikov conjecture and the coarse Baum–Connes conjecture. The aim of the present paper is to prove that property in particular examples, like spaces with subexponential growth, amalgamated free products of discrete groups having property A and HNN extensions of discrete groups having property A.},
author = {Tu, Jean-Louis},
journal = {Bulletin de la Société Mathématique de France},
keywords = {metric spaces; Novikov conjecture; coarse Baum–Connes conjecture},
language = {eng},
number = {1},
pages = {115-139},
publisher = {Société mathématique de France},
title = {Remarks on Yu’s ‘property A’ for discrete metric spaces and groups},
url = {http://eudml.org/doc/272492},
volume = {129},
year = {2001},
}
TY - JOUR
AU - Tu, Jean-Louis
TI - Remarks on Yu’s ‘property A’ for discrete metric spaces and groups
JO - Bulletin de la Société Mathématique de France
PY - 2001
PB - Société mathématique de France
VL - 129
IS - 1
SP - 115
EP - 139
AB - Guoliang Yu has introduced a property on discrete metric spaces and groups, which is a weak form of amenability and which has important applications to the Novikov conjecture and the coarse Baum–Connes conjecture. The aim of the present paper is to prove that property in particular examples, like spaces with subexponential growth, amalgamated free products of discrete groups having property A and HNN extensions of discrete groups having property A.
LA - eng
KW - metric spaces; Novikov conjecture; coarse Baum–Connes conjecture
UR - http://eudml.org/doc/272492
ER -
References
top- [1] J. M. Alonso & M. R. Bridson – « Semihyperbolic groups », Proc. London Math. Soc. (3) 70 (1995), no. 1, p. 56–114. Zbl0823.20035MR1300841
- [2] C. Anantharaman-Delaroche & J. Renault – Amenable groupoids, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 36, L’Enseignement Mathématique, Geneva, 2000, With a foreword by Georges Skandalis and Appendix B by E. Germain. Zbl0960.43003MR1799683
- [3] P. Baum, A. Connes & N. Higson – « Classifying space for proper actions and -theory of group -algebras », -algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, p. 240–291. Zbl0830.46061MR1292018
- [4] J. Dixmier – -algebras, North-Holland Mathematical Library, 1982. Zbl0657.46040MR458185
- [5] P. Eymard – Moyennes invariantes et représentations unitaires, Lecture Notes in Mathematics, Vol. 300, Springer-Verlag, Berlin, 1972. Zbl0249.43004MR447969
- [6] É. Ghys & P. de la Harpe – « Espaces métriques hyperboliques », Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988), Progr. Math., vol. 83, Birkhäuser Boston, Boston, MA, 1990, p. 27–45. Zbl0731.20025MR1086648
- [7] G. Gong & G. Yu – « Volume growth and positive scalar curvature », Geom. Funct. Anal. 10 (2000), no. 4, p. 821–828. Zbl0979.53033MR1791141
- [8] M. Gromov – « Asymptotic invariants of infinite groups », Geometric group theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, p. 1–295. Zbl0841.20039MR1253544
- [9] —, « Spaces and questions », Geom. Funct. Anal. (2000), no. Special Volume, Part I, p. 118–161, GAFA 2000 (Tel Aviv, 1999). MR1826251
- [10] P. de la Harpe & A. Valette – « La propriété de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger) », Astérisque (1989), no. 175, p. 158, With an appendix by M. Burger. Zbl0759.22001MR1023471
- [11] N. Higson – « Bivariant -theory and the Novikov conjecture », Geom. Funct. Anal. 10 (2000), no. 3, p. 563–581. Zbl0962.46052MR1779613
- [12] N. Higson & J. Roe – « Amenable group actions and the Novikov conjecture », J. Reine Angew. Math.519 (2000), p. 143–153. Zbl0964.55015MR1739727
- [13] J. Roe – Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, vol. 90, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1996. Zbl0853.58003MR1399087
- [14] P. Scott & T. Wall – « Topological methods in group theory », Homological group theory (Proc. Sympos., Durham, 1977), London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge, 1979, p. 137–203. Zbl0423.20023MR564422
- [15] J.-P. Serre – Trees, Springer-Verlag, Berlin, 1980, Translated from the French by John Stillwell. Zbl0548.20018MR1954121
- [16] G. Skandalis, J. L. Tu & G. Yu – « The coarse Baum-Connes conjecture and groupoids », Topology 41 (2002), no. 4, p. 807–834. Zbl1033.19003MR1905840
- [17] S. Wassermann – Exact -algebras and related topics, Lecture Notes Series, vol. 19, Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 1994. Zbl0828.46054MR1271145
- [18] G. Yu – « Coarse Baum-Connes conjecture », -Theory 9 (1995), no. 3, p. 199–221. Zbl0829.19004MR1344138
- [19] —, « The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space », Invent. Math. 139 (2000), no. 1, p. 201–240. Zbl0956.19004MR1728880
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.