Appendix to the article of T. Peternell: the Kodaira dimension of Kummer threefolds

Frédéric Campana; Thomas Peternell

Bulletin de la Société Mathématique de France (2001)

  • Volume: 129, Issue: 3, page 357-359
  • ISSN: 0037-9484

Abstract

top
We prove that Kummer threefolds T / G with algebraic dimension 0 have Kodaira dimension 0.

How to cite

top

Campana, Frédéric, and Peternell, Thomas. "Appendix to the article of T. Peternell: the Kodaira dimension of Kummer threefolds." Bulletin de la Société Mathématique de France 129.3 (2001): 357-359. <http://eudml.org/doc/272522>.

@article{Campana2001,
abstract = {We prove that Kummer threefolds $T/G$ with algebraic dimension $0$ have Kodaira dimension 0.},
author = {Campana, Frédéric, Peternell, Thomas},
journal = {Bulletin de la Société Mathématique de France},
keywords = {kähler threefolds; Kodaira dimension},
language = {eng},
number = {3},
pages = {357-359},
publisher = {Société mathématique de France},
title = {Appendix to the article of T. Peternell: the Kodaira dimension of Kummer threefolds},
url = {http://eudml.org/doc/272522},
volume = {129},
year = {2001},
}

TY - JOUR
AU - Campana, Frédéric
AU - Peternell, Thomas
TI - Appendix to the article of T. Peternell: the Kodaira dimension of Kummer threefolds
JO - Bulletin de la Société Mathématique de France
PY - 2001
PB - Société mathématique de France
VL - 129
IS - 3
SP - 357
EP - 359
AB - We prove that Kummer threefolds $T/G$ with algebraic dimension $0$ have Kodaira dimension 0.
LA - eng
KW - kähler threefolds; Kodaira dimension
UR - http://eudml.org/doc/272522
ER -

References

top
  1. [1] C. Banica & O. Stanasila – Algebraic methods in the global theory of complex spaces, Wiley, 1976. Zbl0334.32001MR463470
  2. [2] A. Fletcher – « Contributions to Riemann-Roch on projective 3-folds with only canonical singularities », Proc. Symp. Pure Math., vol. 46, 1987, p. 221–231. Zbl0662.14026MR927958
  3. [3] Y. Kawamata., K. Matsuda & K. Matsuki – « Introduction to the minimal model problem », Adv. Stud. Pure Math., vol. 10, 1987, p. 283–360. Zbl0672.14006MR946243
  4. [4] Y. Miyaoka – « The Chern classes and Kodaira dimension of a minimal variety », Adv. Stud. Pure Math., vol. 10, 1987, p. 449–476. Zbl0648.14006MR946247
  5. [5] T. Peternell – « Minimal varieties with trivial canonical class, I », Math. Z.217 (1994), p. 377–407. Zbl0815.14009MR1306667
  6. [6] M. Reid – « Young person’s guide to canonical singularities, Part 1 », Proc. Symp. Pure Math., vol. 46, 1987, p. 345–414. Zbl0634.14003MR927963
  7. [7] K. Ueno – Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Math., vol. 439, Springer, 1975. Zbl0299.14007MR506253

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.