Appendix to the article of T. Peternell: the Kodaira dimension of Kummer threefolds
Frédéric Campana; Thomas Peternell
Bulletin de la Société Mathématique de France (2001)
- Volume: 129, Issue: 3, page 357-359
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topCampana, Frédéric, and Peternell, Thomas. "Appendix to the article of T. Peternell: the Kodaira dimension of Kummer threefolds." Bulletin de la Société Mathématique de France 129.3 (2001): 357-359. <http://eudml.org/doc/272522>.
@article{Campana2001,
abstract = {We prove that Kummer threefolds $T/G$ with algebraic dimension $0$ have Kodaira dimension 0.},
author = {Campana, Frédéric, Peternell, Thomas},
journal = {Bulletin de la Société Mathématique de France},
keywords = {kähler threefolds; Kodaira dimension},
language = {eng},
number = {3},
pages = {357-359},
publisher = {Société mathématique de France},
title = {Appendix to the article of T. Peternell: the Kodaira dimension of Kummer threefolds},
url = {http://eudml.org/doc/272522},
volume = {129},
year = {2001},
}
TY - JOUR
AU - Campana, Frédéric
AU - Peternell, Thomas
TI - Appendix to the article of T. Peternell: the Kodaira dimension of Kummer threefolds
JO - Bulletin de la Société Mathématique de France
PY - 2001
PB - Société mathématique de France
VL - 129
IS - 3
SP - 357
EP - 359
AB - We prove that Kummer threefolds $T/G$ with algebraic dimension $0$ have Kodaira dimension 0.
LA - eng
KW - kähler threefolds; Kodaira dimension
UR - http://eudml.org/doc/272522
ER -
References
top- [1] C. Banica & O. Stanasila – Algebraic methods in the global theory of complex spaces, Wiley, 1976. Zbl0334.32001MR463470
- [2] A. Fletcher – « Contributions to Riemann-Roch on projective 3-folds with only canonical singularities », Proc. Symp. Pure Math., vol. 46, 1987, p. 221–231. Zbl0662.14026MR927958
- [3] Y. Kawamata., K. Matsuda & K. Matsuki – « Introduction to the minimal model problem », Adv. Stud. Pure Math., vol. 10, 1987, p. 283–360. Zbl0672.14006MR946243
- [4] Y. Miyaoka – « The Chern classes and Kodaira dimension of a minimal variety », Adv. Stud. Pure Math., vol. 10, 1987, p. 449–476. Zbl0648.14006MR946247
- [5] T. Peternell – « Minimal varieties with trivial canonical class, I », Math. Z.217 (1994), p. 377–407. Zbl0815.14009MR1306667
- [6] M. Reid – « Young person’s guide to canonical singularities, Part 1 », Proc. Symp. Pure Math., vol. 46, 1987, p. 345–414. Zbl0634.14003MR927963
- [7] K. Ueno – Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Math., vol. 439, Springer, 1975. Zbl0299.14007MR506253
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.