Random walks in with non-zero drift absorbed at the axes
Bulletin de la Société Mathématique de France (2011)
- Volume: 139, Issue: 3, page 341-387
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topKurkova, Irina, and Raschel, Kilian. "Random walks in $(\mathbb {Z}_{+})^{2}$ with non-zero drift absorbed at the axes." Bulletin de la Société Mathématique de France 139.3 (2011): 341-387. <http://eudml.org/doc/272541>.
@article{Kurkova2011,
abstract = {Spatially homogeneous random walks in $(\mathbb \{Z\}_\{+\})^\{2\}$ with non-zero jump probabilities at distance at most $1$, with non-zero drift in the interior of the quadrant and absorbed when reaching the axes are studied. Absorption probabilities generating functions are obtained and the asymptotic of absorption probabilities along the axes is made explicit. The asymptotic of the Green functions is computed along all different infinite paths of states, in particular along those approaching the axes.},
author = {Kurkova, Irina, Raschel, Kilian},
journal = {Bulletin de la Société Mathématique de France},
keywords = {random walk; Green functions; absorption probabilities; singularities of complex functions; holomorphic continuation; steepest descent method},
language = {eng},
number = {3},
pages = {341-387},
publisher = {Société mathématique de France},
title = {Random walks in $(\mathbb \{Z\}_\{+\})^\{2\}$ with non-zero drift absorbed at the axes},
url = {http://eudml.org/doc/272541},
volume = {139},
year = {2011},
}
TY - JOUR
AU - Kurkova, Irina
AU - Raschel, Kilian
TI - Random walks in $(\mathbb {Z}_{+})^{2}$ with non-zero drift absorbed at the axes
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 3
SP - 341
EP - 387
AB - Spatially homogeneous random walks in $(\mathbb {Z}_{+})^{2}$ with non-zero jump probabilities at distance at most $1$, with non-zero drift in the interior of the quadrant and absorbed when reaching the axes are studied. Absorption probabilities generating functions are obtained and the asymptotic of absorption probabilities along the axes is made explicit. The asymptotic of the Green functions is computed along all different infinite paths of states, in particular along those approaching the axes.
LA - eng
KW - random walk; Green functions; absorption probabilities; singularities of complex functions; holomorphic continuation; steepest descent method
UR - http://eudml.org/doc/272541
ER -
References
top- [1] P. Biane – « Quantum random walk on the dual of », Probab. Theory Related Fields89 (1991), p. 117–129. Zbl0746.46058MR1109477
- [2] —, « Frontière de Martin du dual de », in Séminaire de Probabilités, XXVI, Lecture Notes in Math., vol. 1526, Springer, 1992, p. 225–233. Zbl0763.60034
- [3] —, « Minuscule weights and random walks on lattices », in Quantum probability & related topics, QP-PQ, VII, World Sci. Publ., River Edge, NJ, 1992, p. 51–65. Zbl0787.60089MR1186654
- [4] M. Bousquet-Mélou & M. Mishna – « Walks with small steps in the quarter plane », in Algorithmic probability and combinatorics, Contemp. Math., vol. 520, Amer. Math. Soc., 2010, p. 1–39. Zbl1209.05008MR2681853
- [5] M.-F. Bru – « Wishart processes », J. Theoret. Probab.4 (1991), p. 725–751. Zbl0737.60067MR1132135
- [6] B. Chabat – Introduction à l’analyse complexe. Tome 1, Traduit du Russe: Mathématiques., “Mir”, 1990. Zbl0732.30001
- [7] F. J. Dyson – « A Brownian-motion model for the eigenvalues of a random matrix », J. Mathematical Phys.3 (1962), p. 1191–1198. Zbl0111.32703MR148397
- [8] P. Eichelsbacher & W. König – « Ordered random walks », Electron. J. Probab. 13 (2008), p. no. 46, 1307–1336. Zbl1189.60092MR2430709
- [9] G. Fayolle, R. Iasnogorodski & V. A. Malyshev – Random walks in the quarter-plane, Applications of Mathematics (New York), vol. 40, Springer, 1999. Zbl0932.60002MR1691900
- [10] M. V. Fedoryuk – « Asymptotic methods in analysis », in Current problems of mathematics. Fundamental directions, Vol. 13 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1986, p. 93–210. Zbl0655.41034MR899753
- [11] D. J. Grabiner – « Brownian motion in a Weyl chamber, non-colliding particles, and random matrices », Ann. Inst. H. Poincaré Probab. Statist.35 (1999), p. 177–204. Zbl0937.60075MR1678525
- [12] P.-L. Hennequin – « Processus de Markoff en cascade », Ann. Inst. H. Poincaré18 (1963), p. 109–195. Zbl0141.15802MR164373
- [13] D. G. Hobson & W. Werner – « Non-colliding Brownian motions on the circle », Bull. London Math. Soc.28 (1996), p. 643–650. Zbl0853.60060MR1405497
- [14] I. Ignatiouk-Robert – « Martin boundary of a killed random walk on a half-space », J. Theoret. Probab.21 (2008), p. 35–68. Zbl1146.60061MR2384472
- [15] —, « Martin boundary of a reflected random walk on a half-space », Probab. Theory Related Fields148 (2010), p. 197–245. Zbl1205.60140MR2653227
- [16] I. Ignatiouk-Robert & C. Loree – « Martin boundary of a killed random walk on a quadrant », Ann. Probab.38 (2010), p. 1106–1142. Zbl1205.60057MR2674995
- [17] K. Johansson – « Shape fluctuations and random matrices », Comm. Math. Phys.209 (2000), p. 437–476. Zbl0969.15008MR1737991
- [18] —, « Non-intersecting paths, random tilings and random matrices », Probab. Theory Related Fields123 (2002), p. 225–280. Zbl1008.60019MR1900323
- [19] M. Katori & H. Tanemura – « Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems », J. Math. Phys.45 (2004), p. 3058–3085. Zbl1071.82045MR2077500
- [20] W. König & N. O’Connell – « Eigenvalues of the Laguerre process as non-colliding squared Bessel processes », Electron. Comm. Probab.6 (2001), p. 107–114. Zbl1011.15012MR1871699
- [21] W. König, N. O’Connell & S. Roch – « Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles », Electron. J. Probab. 7 (2002), p. no. 5, 24 pp. Zbl1007.60075MR1887625
- [22] I. A. Kurkova & V. A. Malyshev – « Martin boundary and elliptic curves », Markov Process. Related Fields4 (1998), p. 203–272. Zbl0929.60055MR1641546
- [23] J. K. Lu – Boundary value problems for analytic functions, Series in Pure Mathematics, vol. 16, World Scientific Publishing Co. Inc., 1993. Zbl0818.30027MR1279172
- [24] V. A. Malyshev – « An analytical method in the theory of two-dimensional positive random walks », Sib. Math. J.13 (1972), p. 917–929. Zbl0287.60072
- [25] —, « Asymptotic behavior of the stationary probabilities for two-dimensional positive random walks », Sib. Math. J.14 (1973), p. 109–118. Zbl0307.60060MR433604
- [26] N. O’Connell – « Conditioned random walks and the RSK correspondence », J. Phys. A36 (2003), p. 3049–3066. Zbl1035.05097MR1986407
- [27] —, « A path-transformation for random walks and the Robinson-Schensted correspondence », Trans. Amer. Math. Soc.355 (2003), p. 3669–3697. Zbl1031.05132MR1990168
- [28] —, « Random matrices, non-colliding processes and queues », in Séminaire de Probabilités, XXXVI, Lecture Notes in Math., vol. 1801, Springer, 2003, p. 165–182. Zbl1041.15019MR1971584
- [29] N. O’Connell & M. Yor – « A representation for non-colliding random walks », Electron. Comm. Probab.7 (2002), p. 1–12. Zbl1037.15019MR1887169
- [30] K. Raschel – « Random walks in the quarter plane absorbed at the boundary : Exact and asymptotic », preprint arXiv:0902.2785.
- [31] G. Sansone & J. Gerretsen – Lectures on the theory of functions of a complex variable. II: Geometric theory, Wolters-Noordhoff Publishing, Groningen, 1969. Zbl0188.38104MR259072
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.