Random walks in with non-zero drift absorbed at the axes
Bulletin de la Société Mathématique de France (2011)
- Volume: 139, Issue: 3, page 341-387
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P. Biane – « Quantum random walk on the dual of », Probab. Theory Related Fields89 (1991), p. 117–129. Zbl0746.46058MR1109477
- [2] —, « Frontière de Martin du dual de », in Séminaire de Probabilités, XXVI, Lecture Notes in Math., vol. 1526, Springer, 1992, p. 225–233. Zbl0763.60034
- [3] —, « Minuscule weights and random walks on lattices », in Quantum probability & related topics, QP-PQ, VII, World Sci. Publ., River Edge, NJ, 1992, p. 51–65. Zbl0787.60089MR1186654
- [4] M. Bousquet-Mélou & M. Mishna – « Walks with small steps in the quarter plane », in Algorithmic probability and combinatorics, Contemp. Math., vol. 520, Amer. Math. Soc., 2010, p. 1–39. Zbl1209.05008MR2681853
- [5] M.-F. Bru – « Wishart processes », J. Theoret. Probab.4 (1991), p. 725–751. Zbl0737.60067MR1132135
- [6] B. Chabat – Introduction à l’analyse complexe. Tome 1, Traduit du Russe: Mathématiques., “Mir”, 1990. Zbl0732.30001
- [7] F. J. Dyson – « A Brownian-motion model for the eigenvalues of a random matrix », J. Mathematical Phys.3 (1962), p. 1191–1198. Zbl0111.32703MR148397
- [8] P. Eichelsbacher & W. König – « Ordered random walks », Electron. J. Probab. 13 (2008), p. no. 46, 1307–1336. Zbl1189.60092MR2430709
- [9] G. Fayolle, R. Iasnogorodski & V. A. Malyshev – Random walks in the quarter-plane, Applications of Mathematics (New York), vol. 40, Springer, 1999. Zbl0932.60002MR1691900
- [10] M. V. Fedoryuk – « Asymptotic methods in analysis », in Current problems of mathematics. Fundamental directions, Vol. 13 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1986, p. 93–210. Zbl0655.41034MR899753
- [11] D. J. Grabiner – « Brownian motion in a Weyl chamber, non-colliding particles, and random matrices », Ann. Inst. H. Poincaré Probab. Statist.35 (1999), p. 177–204. Zbl0937.60075MR1678525
- [12] P.-L. Hennequin – « Processus de Markoff en cascade », Ann. Inst. H. Poincaré18 (1963), p. 109–195. Zbl0141.15802MR164373
- [13] D. G. Hobson & W. Werner – « Non-colliding Brownian motions on the circle », Bull. London Math. Soc.28 (1996), p. 643–650. Zbl0853.60060MR1405497
- [14] I. Ignatiouk-Robert – « Martin boundary of a killed random walk on a half-space », J. Theoret. Probab.21 (2008), p. 35–68. Zbl1146.60061MR2384472
- [15] —, « Martin boundary of a reflected random walk on a half-space », Probab. Theory Related Fields148 (2010), p. 197–245. Zbl1205.60140MR2653227
- [16] I. Ignatiouk-Robert & C. Loree – « Martin boundary of a killed random walk on a quadrant », Ann. Probab.38 (2010), p. 1106–1142. Zbl1205.60057MR2674995
- [17] K. Johansson – « Shape fluctuations and random matrices », Comm. Math. Phys.209 (2000), p. 437–476. Zbl0969.15008MR1737991
- [18] —, « Non-intersecting paths, random tilings and random matrices », Probab. Theory Related Fields123 (2002), p. 225–280. Zbl1008.60019MR1900323
- [19] M. Katori & H. Tanemura – « Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems », J. Math. Phys.45 (2004), p. 3058–3085. Zbl1071.82045MR2077500
- [20] W. König & N. O’Connell – « Eigenvalues of the Laguerre process as non-colliding squared Bessel processes », Electron. Comm. Probab.6 (2001), p. 107–114. Zbl1011.15012MR1871699
- [21] W. König, N. O’Connell & S. Roch – « Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles », Electron. J. Probab. 7 (2002), p. no. 5, 24 pp. Zbl1007.60075MR1887625
- [22] I. A. Kurkova & V. A. Malyshev – « Martin boundary and elliptic curves », Markov Process. Related Fields4 (1998), p. 203–272. Zbl0929.60055MR1641546
- [23] J. K. Lu – Boundary value problems for analytic functions, Series in Pure Mathematics, vol. 16, World Scientific Publishing Co. Inc., 1993. Zbl0818.30027MR1279172
- [24] V. A. Malyshev – « An analytical method in the theory of two-dimensional positive random walks », Sib. Math. J.13 (1972), p. 917–929. Zbl0287.60072
- [25] —, « Asymptotic behavior of the stationary probabilities for two-dimensional positive random walks », Sib. Math. J.14 (1973), p. 109–118. Zbl0307.60060MR433604
- [26] N. O’Connell – « Conditioned random walks and the RSK correspondence », J. Phys. A36 (2003), p. 3049–3066. Zbl1035.05097MR1986407
- [27] —, « A path-transformation for random walks and the Robinson-Schensted correspondence », Trans. Amer. Math. Soc.355 (2003), p. 3669–3697. Zbl1031.05132MR1990168
- [28] —, « Random matrices, non-colliding processes and queues », in Séminaire de Probabilités, XXXVI, Lecture Notes in Math., vol. 1801, Springer, 2003, p. 165–182. Zbl1041.15019MR1971584
- [29] N. O’Connell & M. Yor – « A representation for non-colliding random walks », Electron. Comm. Probab.7 (2002), p. 1–12. Zbl1037.15019MR1887169
- [30] K. Raschel – « Random walks in the quarter plane absorbed at the boundary : Exact and asymptotic », preprint arXiv:0902.2785.
- [31] G. Sansone & J. Gerretsen – Lectures on the theory of functions of a complex variable. II: Geometric theory, Wolters-Noordhoff Publishing, Groningen, 1969. Zbl0188.38104MR259072