Random walks in ( + ) 2 with non-zero drift absorbed at the axes

Irina Kurkova; Kilian Raschel

Bulletin de la Société Mathématique de France (2011)

  • Volume: 139, Issue: 3, page 341-387
  • ISSN: 0037-9484

Abstract

top
Spatially homogeneous random walks in ( + ) 2 with non-zero jump probabilities at distance at most 1 , with non-zero drift in the interior of the quadrant and absorbed when reaching the axes are studied. Absorption probabilities generating functions are obtained and the asymptotic of absorption probabilities along the axes is made explicit. The asymptotic of the Green functions is computed along all different infinite paths of states, in particular along those approaching the axes.

How to cite

top

Kurkova, Irina, and Raschel, Kilian. "Random walks in $(\mathbb {Z}_{+})^{2}$ with non-zero drift absorbed at the axes." Bulletin de la Société Mathématique de France 139.3 (2011): 341-387. <http://eudml.org/doc/272541>.

@article{Kurkova2011,
abstract = {Spatially homogeneous random walks in $(\mathbb \{Z\}_\{+\})^\{2\}$ with non-zero jump probabilities at distance at most $1$, with non-zero drift in the interior of the quadrant and absorbed when reaching the axes are studied. Absorption probabilities generating functions are obtained and the asymptotic of absorption probabilities along the axes is made explicit. The asymptotic of the Green functions is computed along all different infinite paths of states, in particular along those approaching the axes.},
author = {Kurkova, Irina, Raschel, Kilian},
journal = {Bulletin de la Société Mathématique de France},
keywords = {random walk; Green functions; absorption probabilities; singularities of complex functions; holomorphic continuation; steepest descent method},
language = {eng},
number = {3},
pages = {341-387},
publisher = {Société mathématique de France},
title = {Random walks in $(\mathbb \{Z\}_\{+\})^\{2\}$ with non-zero drift absorbed at the axes},
url = {http://eudml.org/doc/272541},
volume = {139},
year = {2011},
}

TY - JOUR
AU - Kurkova, Irina
AU - Raschel, Kilian
TI - Random walks in $(\mathbb {Z}_{+})^{2}$ with non-zero drift absorbed at the axes
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 3
SP - 341
EP - 387
AB - Spatially homogeneous random walks in $(\mathbb {Z}_{+})^{2}$ with non-zero jump probabilities at distance at most $1$, with non-zero drift in the interior of the quadrant and absorbed when reaching the axes are studied. Absorption probabilities generating functions are obtained and the asymptotic of absorption probabilities along the axes is made explicit. The asymptotic of the Green functions is computed along all different infinite paths of states, in particular along those approaching the axes.
LA - eng
KW - random walk; Green functions; absorption probabilities; singularities of complex functions; holomorphic continuation; steepest descent method
UR - http://eudml.org/doc/272541
ER -

References

top
  1. [1] P. Biane – « Quantum random walk on the dual of SU ( n ) », Probab. Theory Related Fields89 (1991), p. 117–129. Zbl0746.46058MR1109477
  2. [2] —, « Frontière de Martin du dual de SU ( 2 ) », in Séminaire de Probabilités, XXVI, Lecture Notes in Math., vol. 1526, Springer, 1992, p. 225–233. Zbl0763.60034
  3. [3] —, « Minuscule weights and random walks on lattices », in Quantum probability & related topics, QP-PQ, VII, World Sci. Publ., River Edge, NJ, 1992, p. 51–65. Zbl0787.60089MR1186654
  4. [4] M. Bousquet-Mélou & M. Mishna – « Walks with small steps in the quarter plane », in Algorithmic probability and combinatorics, Contemp. Math., vol. 520, Amer. Math. Soc., 2010, p. 1–39. Zbl1209.05008MR2681853
  5. [5] M.-F. Bru – « Wishart processes », J. Theoret. Probab.4 (1991), p. 725–751. Zbl0737.60067MR1132135
  6. [6] B. Chabat – Introduction à l’analyse complexe. Tome 1, Traduit du Russe: Mathématiques., “Mir”, 1990. Zbl0732.30001
  7. [7] F. J. Dyson – « A Brownian-motion model for the eigenvalues of a random matrix », J. Mathematical Phys.3 (1962), p. 1191–1198. Zbl0111.32703MR148397
  8. [8] P. Eichelsbacher & W. König – « Ordered random walks », Electron. J. Probab. 13 (2008), p. no. 46, 1307–1336. Zbl1189.60092MR2430709
  9. [9] G. Fayolle, R. Iasnogorodski & V. A. Malyshev – Random walks in the quarter-plane, Applications of Mathematics (New York), vol. 40, Springer, 1999. Zbl0932.60002MR1691900
  10. [10] M. V. Fedoryuk – « Asymptotic methods in analysis », in Current problems of mathematics. Fundamental directions, Vol. 13 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1986, p. 93–210. Zbl0655.41034MR899753
  11. [11] D. J. Grabiner – « Brownian motion in a Weyl chamber, non-colliding particles, and random matrices », Ann. Inst. H. Poincaré Probab. Statist.35 (1999), p. 177–204. Zbl0937.60075MR1678525
  12. [12] P.-L. Hennequin – « Processus de Markoff en cascade », Ann. Inst. H. Poincaré18 (1963), p. 109–195. Zbl0141.15802MR164373
  13. [13] D. G. Hobson & W. Werner – « Non-colliding Brownian motions on the circle », Bull. London Math. Soc.28 (1996), p. 643–650. Zbl0853.60060MR1405497
  14. [14] I. Ignatiouk-Robert – « Martin boundary of a killed random walk on a half-space », J. Theoret. Probab.21 (2008), p. 35–68. Zbl1146.60061MR2384472
  15. [15] —, « Martin boundary of a reflected random walk on a half-space », Probab. Theory Related Fields148 (2010), p. 197–245. Zbl1205.60140MR2653227
  16. [16] I. Ignatiouk-Robert & C. Loree – « Martin boundary of a killed random walk on a quadrant », Ann. Probab.38 (2010), p. 1106–1142. Zbl1205.60057MR2674995
  17. [17] K. Johansson – « Shape fluctuations and random matrices », Comm. Math. Phys.209 (2000), p. 437–476. Zbl0969.15008MR1737991
  18. [18] —, « Non-intersecting paths, random tilings and random matrices », Probab. Theory Related Fields123 (2002), p. 225–280. Zbl1008.60019MR1900323
  19. [19] M. Katori & H. Tanemura – « Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems », J. Math. Phys.45 (2004), p. 3058–3085. Zbl1071.82045MR2077500
  20. [20] W. König & N. O’Connell – « Eigenvalues of the Laguerre process as non-colliding squared Bessel processes », Electron. Comm. Probab.6 (2001), p. 107–114. Zbl1011.15012MR1871699
  21. [21] W. König, N. O’Connell & S. Roch – « Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles », Electron. J. Probab. 7 (2002), p. no. 5, 24 pp. Zbl1007.60075MR1887625
  22. [22] I. A. Kurkova & V. A. Malyshev – « Martin boundary and elliptic curves », Markov Process. Related Fields4 (1998), p. 203–272. Zbl0929.60055MR1641546
  23. [23] J. K. Lu – Boundary value problems for analytic functions, Series in Pure Mathematics, vol. 16, World Scientific Publishing Co. Inc., 1993. Zbl0818.30027MR1279172
  24. [24] V. A. Malyshev – « An analytical method in the theory of two-dimensional positive random walks », Sib. Math. J.13 (1972), p. 917–929. Zbl0287.60072
  25. [25] —, « Asymptotic behavior of the stationary probabilities for two-dimensional positive random walks », Sib. Math. J.14 (1973), p. 109–118. Zbl0307.60060MR433604
  26. [26] N. O’Connell – « Conditioned random walks and the RSK correspondence », J. Phys. A36 (2003), p. 3049–3066. Zbl1035.05097MR1986407
  27. [27] —, « A path-transformation for random walks and the Robinson-Schensted correspondence », Trans. Amer. Math. Soc.355 (2003), p. 3669–3697. Zbl1031.05132MR1990168
  28. [28] —, « Random matrices, non-colliding processes and queues », in Séminaire de Probabilités, XXXVI, Lecture Notes in Math., vol. 1801, Springer, 2003, p. 165–182. Zbl1041.15019MR1971584
  29. [29] N. O’Connell & M. Yor – « A representation for non-colliding random walks », Electron. Comm. Probab.7 (2002), p. 1–12. Zbl1037.15019MR1887169
  30. [30] K. Raschel – « Random walks in the quarter plane absorbed at the boundary : Exact and asymptotic », preprint arXiv:0902.2785. 
  31. [31] G. Sansone & J. Gerretsen – Lectures on the theory of functions of a complex variable. II: Geometric theory, Wolters-Noordhoff Publishing, Groningen, 1969. Zbl0188.38104MR259072

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.