Pull-back of currents by meromorphic maps
Bulletin de la Société Mathématique de France (2013)
- Volume: 141, Issue: 4, page 517-555
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topTrung Truong, Tuyen. "Pull-back of currents by meromorphic maps." Bulletin de la Société Mathématique de France 141.4 (2013): 517-555. <http://eudml.org/doc/272547>.
@article{TrungTruong2013,
abstract = {Let $X$ and $Y$ be compact Kähler manifolds, and let $f:X\rightarrow Y$ be a dominant meromorphic map. Based upon a regularization theorem of Dinh and Sibony for DSH currents, we define a pullback operator $f^\{\sharp \}$ for currents of bidegrees $(p,p)$ of finite order on $Y$ (and thus foranycurrent, since $Y$ is compact). This operator has good properties as may be expected.
Our definition and results are compatible to those of various previous works of Meo, Russakovskii and Shiffman, Alessandrini and Bassanelli, Dinh and Sibony, and can be readily extended to the case of meromorphic correspondences.
We give an example of a meromorphic map $f$ and two nonzero positive closed currents $T_1,T_2$ for which $f^\{\sharp \}(T_1)=-T_2$. We use Siu’s decomposition to help further study on pulling back positive closed currents. Many applications on finding invariant currents are given.},
author = {Trung Truong, Tuyen},
journal = {Bulletin de la Société Mathématique de France},
keywords = {currents; dominant meromorphic maps; untersection of currents; pull-back of currents},
language = {eng},
number = {4},
pages = {517-555},
publisher = {Société mathématique de France},
title = {Pull-back of currents by meromorphic maps},
url = {http://eudml.org/doc/272547},
volume = {141},
year = {2013},
}
TY - JOUR
AU - Trung Truong, Tuyen
TI - Pull-back of currents by meromorphic maps
JO - Bulletin de la Société Mathématique de France
PY - 2013
PB - Société mathématique de France
VL - 141
IS - 4
SP - 517
EP - 555
AB - Let $X$ and $Y$ be compact Kähler manifolds, and let $f:X\rightarrow Y$ be a dominant meromorphic map. Based upon a regularization theorem of Dinh and Sibony for DSH currents, we define a pullback operator $f^{\sharp }$ for currents of bidegrees $(p,p)$ of finite order on $Y$ (and thus foranycurrent, since $Y$ is compact). This operator has good properties as may be expected.
Our definition and results are compatible to those of various previous works of Meo, Russakovskii and Shiffman, Alessandrini and Bassanelli, Dinh and Sibony, and can be readily extended to the case of meromorphic correspondences.
We give an example of a meromorphic map $f$ and two nonzero positive closed currents $T_1,T_2$ for which $f^{\sharp }(T_1)=-T_2$. We use Siu’s decomposition to help further study on pulling back positive closed currents. Many applications on finding invariant currents are given.
LA - eng
KW - currents; dominant meromorphic maps; untersection of currents; pull-back of currents
UR - http://eudml.org/doc/272547
ER -
References
top- [1] L. Alessandrini & G. Bassanelli – « Transforms of currents by modifications and 1-convex manifolds », Osaka J. Math.40 (2003), p. 717–740. Zbl1034.32009MR2003745
- [2] G. Bassanelli – « A cut-off theorem for plurisubharmonic currents », Forum Math.6 (1994), p. 567–595. Zbl0808.32010MR1295153
- [3] E. Bedford & K.-H. Kim – « Pseudo-automorphisms of -space: periodicities and positive entropy in linear fractional recurrences », preprint arXiv:1101.1614.
- [4] J.-B. Bost, H. Gillet & C. Soulé – « Heights of projective varieties and positive Green forms », J. Amer. Math. Soc.7 (1994), p. 903–1027. Zbl0973.14013MR1260106
- [5] X. Buff – « Courants dynamiques pluripolaires », Ann. Fac. Sci. Toulouse Math.20 (2011), p. 203–214. MR2830397
- [6] J.-P. Demailly – « Complex analytic and differential geometry », online book http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf.
- [7] T.-C. Dinh & V.-A. Nguyên – « Comparison of dynamical degrees for semi-conjugate meromorphic maps », Comment. Math. Helv.86 (2011), p. 817–840. Zbl1279.32018MR2851870
- [8] T.-C. Dinh & N. Sibony – « Regularization of currents and entropy », Ann. Sci. École Norm. Sup.37 (2004), p. 959–971. Zbl1074.53058MR2119243
- [9] —, « Green currents for holomorphic automorphisms of compact Kähler manifolds », J. Amer. Math. Soc.18 (2005), p. 291–312. Zbl1066.32024MR2137979
- [10] —, « Pull-back currents by holomorphic maps », Manuscripta Math.123 (2007), p. 357–371. MR2314090
- [11] —, « Super-potentials of positive closed currents, intersection theory and dynamics », Acta Math.203 (2009), p. 1–82. Zbl1227.32024MR2545825
- [12] P. Griffiths & J. Harris – Principles of algebraic geometry, Wiley-Interscience, 1978. MR507725
- [13] V. Guedj – « Ergodic properties of rational mappings with large topological degree », Ann. of Math.161 (2005), p. 1589–1607. Zbl1088.37020MR2179389
- [14] —, « Propriétés ergodiques des applications rationnelles », in Quelques aspects des systèmes dynamiques polynomiaux, Panor. Synthèses, vol. 30, Soc. Math. France, 2010, p. 97–202.
- [15] M. Meo – « Image inverse d’un courant positif fermé par une application analytique surjective », C. R. Acad. Sci. Paris Sér. I Math.322 (1996), p. 1141–1144. MR1396655
- [16] A. Russakovskii & B. Shiffman – « Value distribution for sequences of rational mappings and complex dynamics », Indiana Univ. Math. J.46 (1997), p. 897–932. Zbl0901.58023MR1488341
- [17] N. Sibony – « Dynamique des applications rationnelles de », in Dynamique et géométrie complexes (Lyon, 1997), Panor. Synthèses, vol. 8, Soc. Math. France, 1999, p. 97–185. MR1760844
- [18] Y. T. Siu – « Analyticity of sets associated to Lelong numbers and the extension of closed positive currents », Invent. Math.27 (1974), p. 53–156. Zbl0289.32003MR352516
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.