A non-degeneracy property of extremal mappings and iterates of holomorphic self-mappings
Page 1 Next
Xiaojun Huang (1994)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Chiara Frosini, Fabio Vlacci (2007)
Annales Polonici Mathematici
In this survey we give geometric interpretations of some standard results on boundary behaviour of holomorphic self-maps in the unit disc of ℂ and generalize them to holomorphic self-maps of some particular domains of ℂⁿ.
Viêt-Anh Nguyên (2006)
Publicacions Matemàtiques
We first introduce the class of quasi-algebraically stable meromorphic maps of Pk. This class is strictly larger than that of algebraically stable meromorphic self-maps of Pk. Then we prove that all maps in the new class enjoy a recurrent property. In particular, the algebraic degrees for iterates of these maps can be computed and their first dynamical degrees are always algebraic integers.
Wu, Jinn-Wen (2003)
Applied Mathematics E-Notes [electronic only]
Filippo Bracci (1998)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Okuyama, Yûsuke (2005)
Annales Academiae Scientiarum Fennicae. Mathematica
Marco Abate (1988)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
In this paper we study the semigroups of holomorphic maps of a strictly convex domain into itself. In particular, we characterize the semigroups converging, uniformly on compact subsets, to a holomorphic map .
Xavier Buff (2011)
Annales de la faculté des sciences de Toulouse Mathématiques
On montre l’existence d’applications rationnelles telles que est algébriquement stable : pour tout , ,il existe un unique courant positif fermé de bidegré vérifiant et où est la forme de Fubini-Study sur et est pluripolaire : il existe un ensemble pluripolaire tel que
Vincent Guedj (2005)
Annales scientifiques de l'École Normale Supérieure
Vincent Guedj (2004)
Annales de l'Institut Fourier
Let be a meromorphic self-mapping of a compact Kähler manifold. We study the rate of decreasing of volumes under the iteration of . We use these volume estimates to construct the Green current of in a quite general setting.
Claudio Meneghini (2004)
Rendiconti del Seminario Matematico della Università di Padova
Janina Kotus, Grzegorz Świątek (2002)
Fundamenta Mathematicae
A small perturbation of a rational function causes only a small perturbation of its periodic orbits. We show that the situation is different for transcendental maps. Namely, orbits may escape to infinity under small perturbations of parameters. We show examples where this "diffusion to infinity" occurs and prove certain conditions under which it does not.
Tien-Cuong Dinh (2005)
Bulletin de la Société Mathématique de France
Nous construisons pour toute correspondance polynomiale d’exposant de Lojasiewicz une mesure d’équilibre . Nous montrons que est approximable par les préimages d’un point générique et que les points périodiques répulsifs sont équidistribués sur le support de . En utilisant ces résultats, nous donnons une caractérisation des ensembles d’unicité pour les polynômes.
Jeffrey Diller, Romain Dujardin, Vincent Guedj (2010)
Annales scientifiques de l'École Normale Supérieure
We continue our study of the dynamics of mappings with small topological degree on projective complex surfaces. Previously, under mild hypotheses, we have constructed an ergodic “equilibrium” measure for each such mapping. Here we study the dynamical properties of this measure in detail: we give optimal bounds for its Lyapunov exponents, prove that it has maximal entropy, and show that it has product structure in the natural extension. Under a natural further assumption, we show that saddle points...
Filippo Bracci, Dmitri Zaitsev (2013)
Journal of the European Mathematical Society
Our first main result is a construction of a simple formal normal form for holomorphic diffeomorphisms in whose differentials have one-dimensional family of resonances in the first eigenvalues, (but more resonances are allowed for other eigenvalues). Next, we provide invariants and give conditions for the existence of basins of attraction. Finally, we give applications and examples demonstrating the sharpness of our conditions.
Kohei Ueno (2007)
Publicacions Matemàtiques
We consider complex dynamics of a critically finite holomorphic map from Pk to Pk, which has symmetries associated with the symmetric group Sk+2 acting on Pk, for each k ≥1. The Fatou set of each map of this family consists of attractive basins of superattracting points. Each map of this family satisfies Axiom A.
Charles Favre, Mattias Jonsson (2007)
Annales scientifiques de l'École Normale Supérieure
Vincent Guedj (2003)
Bulletin de la Société Mathématique de France
Let be a dominating rational mapping of first algebraic degree . If is a positive closed current of bidegree on with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks converge to the Green current . For some families of mappings, we get finer convergence results which allow us to characterize all -invariant currents.
Tien-Cuong Dinh, Nessim Sibony (2008)
Annales scientifiques de l'École Normale Supérieure
Let be a non-invertible holomorphic endomorphism of a projective space and its iterate of order . We prove that the pull-back by of a generic (in the Zariski sense) hypersurface, properly normalized, converges to the Green current associated to when tends to infinity. We also give an analogous result for the pull-back of positive closed -currents and a similar result for regular polynomial automorphisms of .
Mariusz Urbański, Anna Zdunik (2013)
Fundamenta Mathematicae
Let f: ℙ → ℙ be a holomorphic endomorphism of a complex projective space , k ≥ 1, and let J be the Julia set of f (the topological support of the unique maximal entropy measure). Then there exists a positive number such that if ϕ: J → ℝ is a Hölder continuous function with , then ϕ admits a unique equilibrium state on J. This equilibrium state is equivalent to a fixed point of the normalized dual Perron-Frobenius operator. In addition, the dynamical system is K-mixing, whence ergodic. Proving...
Page 1 Next