Specialization to the tangent cone and Whitney equisingularity

Arturo Giles Flores

Bulletin de la Société Mathématique de France (2013)

  • Volume: 141, Issue: 2, page 299-342
  • ISSN: 0037-9484

Abstract

top
Let ( X , 0 ) be a reduced, equidimensional germ of an analytic singularity with reduced tangent cone ( C X , 0 , 0 ) . We prove that the absence of exceptional cones is a necessary and sufficient condition for the smooth part 𝔛 0 of the specialization to the tangent cone ϕ : 𝔛 to satisfy Whitney’s conditions along the parameter axis Y . This result is a first step in generalizing to higher dimensions Lê and Teissier’s result for hypersurfaces of 3 which establishes the Whitney equisingularity of X and its tangent cone under these conditions.

How to cite

top

Giles Flores, Arturo. "Specialization to the tangent cone and Whitney equisingularity." Bulletin de la Société Mathématique de France 141.2 (2013): 299-342. <http://eudml.org/doc/272587>.

@article{GilesFlores2013,
abstract = {Let $(X,0)$ be a reduced, equidimensional germ of an analytic singularity with reduced tangent cone $(C_\{X,0\},0)$. We prove that the absence of exceptional cones is a necessary and sufficient condition for the smooth part $\{\mathfrak \{X\}\}^0$ of the specialization to the tangent cone $\varphi : \{\mathfrak \{X\}\}\rightarrow \mathbb \{C\}$ to satisfy Whitney’s conditions along the parameter axis $Y$. This result is a first step in generalizing to higher dimensions Lê and Teissier’s result for hypersurfaces of $\mathbb \{C\}^3$ which establishes the Whitney equisingularity of $X$ and its tangent cone under these conditions.},
author = {Giles Flores, Arturo},
journal = {Bulletin de la Société Mathématique de France},
keywords = {equisingularity; Whitney conditions; specialization to the tangent cone},
language = {eng},
number = {2},
pages = {299-342},
publisher = {Société mathématique de France},
title = {Specialization to the tangent cone and Whitney equisingularity},
url = {http://eudml.org/doc/272587},
volume = {141},
year = {2013},
}

TY - JOUR
AU - Giles Flores, Arturo
TI - Specialization to the tangent cone and Whitney equisingularity
JO - Bulletin de la Société Mathématique de France
PY - 2013
PB - Société mathématique de France
VL - 141
IS - 2
SP - 299
EP - 342
AB - Let $(X,0)$ be a reduced, equidimensional germ of an analytic singularity with reduced tangent cone $(C_{X,0},0)$. We prove that the absence of exceptional cones is a necessary and sufficient condition for the smooth part ${\mathfrak {X}}^0$ of the specialization to the tangent cone $\varphi : {\mathfrak {X}}\rightarrow \mathbb {C}$ to satisfy Whitney’s conditions along the parameter axis $Y$. This result is a first step in generalizing to higher dimensions Lê and Teissier’s result for hypersurfaces of $\mathbb {C}^3$ which establishes the Whitney equisingularity of $X$ and its tangent cone under these conditions.
LA - eng
KW - equisingularity; Whitney conditions; specialization to the tangent cone
UR - http://eudml.org/doc/272587
ER -

References

top
  1. [1] T. Gaffney – « Integral closure of modules and Whitney equisingularity », Invent. Math.107 (1992), p. 301–322. MR1144426
  2. [2] —, « Aureoles and integral closure of modules », in Stratifications, singularities and differential equations, II (Marseille, 1990; Honolulu, HI, 1990), Travaux en Cours, vol. 55, Hermann, 1997, p. 55–62. Zbl0889.32034MR1473241
  3. [3] T. Gaffney & S. L. Kleiman – « Specialization of integral dependence for modules », Invent. Math.137 (1999), p. 541–574. Zbl0980.32009MR1709870
  4. [4] M. Gerstenhaber – « On the deformation of rings and algebras. II », Ann. of Math.84 (1966), p. 1–19. MR207793
  5. [5] G.-M. Greuel, C. Lossen & E. Shustin – Introduction to singularities and deformations, Springer Monographs in Math., Springer, 2007. MR2290112
  6. [6] G.-M. Greuel & G. Pfister – A singular introduction to commutative algebra, Springer, 2007. MR2363237
  7. [7] T. de Jong & G. Pfister – Local analytic geometry, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, 2000. MR1760953
  8. [8] L. Kaup & B. Kaup – Holomorphic functions of several variables, de Gruyter Studies in Mathematics, vol. 3, Walter de Gruyter & Co., 1983. MR716497
  9. [9] M. Lejeune-Jalabert & B. Teissier – « Clôture intégrale des idéaux et équisingularité », Ann. Fac. Sci. Toulouse Math.17 (2008), p. 781–859. MR2499856
  10. [10] V. Navarro Aznar – « Conditions de Whitney et sections planes », Invent. Math.61 (1980), p. 199–225. MR592691
  11. [11] A. Nobile – « Some properties of the Nash blowing-up », Pacific J. Math.60 (1975), p. 297–305. MR409462
  12. [12] C. Sabbah – « Quelques remarques sur la géométrie des espaces conormaux », Astérisque130 (1985), p. 161–192. MR804052
  13. [13] B. Teissier – « Cycles évanescents, sections planes et conditions de Whitney », Astérisque 7–8 (1973), p. 285–362. MR374482
  14. [14] L. D. ung Tráng – « Limites d’espaces tangents sur les surfaces », Nova Acta Leopoldina (N.F.) 52 (1981), p. 119–137. MR642701
  15. [15] L. D. ung Tráng & B. Teissier – « Sur la géométrie des surfaces complexes. I. Tangentes exceptionnelles », Amer. J. Math. 101 (1979), p. 420–452. MR528000
  16. [16] L. D. Tráng & B. Teissier – « Limites d’espaces tangents en géométrie analytique », Comment. Math. Helv.63 (1988), p. 540–578. Zbl0658.32010MR966949
  17. [17] H. Whitney – « Tangents to an analytic variety », Ann. of Math.81 (1965), p. 496–549. Zbl0152.27701MR192520

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.