Specialization to the tangent cone and Whitney equisingularity
Bulletin de la Société Mathématique de France (2013)
- Volume: 141, Issue: 2, page 299-342
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topGiles Flores, Arturo. "Specialization to the tangent cone and Whitney equisingularity." Bulletin de la Société Mathématique de France 141.2 (2013): 299-342. <http://eudml.org/doc/272587>.
@article{GilesFlores2013,
abstract = {Let $(X,0)$ be a reduced, equidimensional germ of an analytic singularity with reduced tangent cone $(C_\{X,0\},0)$. We prove that the absence of exceptional cones is a necessary and sufficient condition for the smooth part $\{\mathfrak \{X\}\}^0$ of the specialization to the tangent cone $\varphi : \{\mathfrak \{X\}\}\rightarrow \mathbb \{C\}$ to satisfy Whitney’s conditions along the parameter axis $Y$. This result is a first step in generalizing to higher dimensions Lê and Teissier’s result for hypersurfaces of $\mathbb \{C\}^3$ which establishes the Whitney equisingularity of $X$ and its tangent cone under these conditions.},
author = {Giles Flores, Arturo},
journal = {Bulletin de la Société Mathématique de France},
keywords = {equisingularity; Whitney conditions; specialization to the tangent cone},
language = {eng},
number = {2},
pages = {299-342},
publisher = {Société mathématique de France},
title = {Specialization to the tangent cone and Whitney equisingularity},
url = {http://eudml.org/doc/272587},
volume = {141},
year = {2013},
}
TY - JOUR
AU - Giles Flores, Arturo
TI - Specialization to the tangent cone and Whitney equisingularity
JO - Bulletin de la Société Mathématique de France
PY - 2013
PB - Société mathématique de France
VL - 141
IS - 2
SP - 299
EP - 342
AB - Let $(X,0)$ be a reduced, equidimensional germ of an analytic singularity with reduced tangent cone $(C_{X,0},0)$. We prove that the absence of exceptional cones is a necessary and sufficient condition for the smooth part ${\mathfrak {X}}^0$ of the specialization to the tangent cone $\varphi : {\mathfrak {X}}\rightarrow \mathbb {C}$ to satisfy Whitney’s conditions along the parameter axis $Y$. This result is a first step in generalizing to higher dimensions Lê and Teissier’s result for hypersurfaces of $\mathbb {C}^3$ which establishes the Whitney equisingularity of $X$ and its tangent cone under these conditions.
LA - eng
KW - equisingularity; Whitney conditions; specialization to the tangent cone
UR - http://eudml.org/doc/272587
ER -
References
top- [1] T. Gaffney – « Integral closure of modules and Whitney equisingularity », Invent. Math.107 (1992), p. 301–322. MR1144426
- [2] —, « Aureoles and integral closure of modules », in Stratifications, singularities and differential equations, II (Marseille, 1990; Honolulu, HI, 1990), Travaux en Cours, vol. 55, Hermann, 1997, p. 55–62. Zbl0889.32034MR1473241
- [3] T. Gaffney & S. L. Kleiman – « Specialization of integral dependence for modules », Invent. Math.137 (1999), p. 541–574. Zbl0980.32009MR1709870
- [4] M. Gerstenhaber – « On the deformation of rings and algebras. II », Ann. of Math.84 (1966), p. 1–19. MR207793
- [5] G.-M. Greuel, C. Lossen & E. Shustin – Introduction to singularities and deformations, Springer Monographs in Math., Springer, 2007. MR2290112
- [6] G.-M. Greuel & G. Pfister – A singular introduction to commutative algebra, Springer, 2007. MR2363237
- [7] T. de Jong & G. Pfister – Local analytic geometry, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, 2000. MR1760953
- [8] L. Kaup & B. Kaup – Holomorphic functions of several variables, de Gruyter Studies in Mathematics, vol. 3, Walter de Gruyter & Co., 1983. MR716497
- [9] M. Lejeune-Jalabert & B. Teissier – « Clôture intégrale des idéaux et équisingularité », Ann. Fac. Sci. Toulouse Math.17 (2008), p. 781–859. MR2499856
- [10] V. Navarro Aznar – « Conditions de Whitney et sections planes », Invent. Math.61 (1980), p. 199–225. MR592691
- [11] A. Nobile – « Some properties of the Nash blowing-up », Pacific J. Math.60 (1975), p. 297–305. MR409462
- [12] C. Sabbah – « Quelques remarques sur la géométrie des espaces conormaux », Astérisque130 (1985), p. 161–192. MR804052
- [13] B. Teissier – « Cycles évanescents, sections planes et conditions de Whitney », Astérisque 7–8 (1973), p. 285–362. MR374482
- [14] L. D. ung Tráng – « Limites d’espaces tangents sur les surfaces », Nova Acta Leopoldina (N.F.) 52 (1981), p. 119–137. MR642701
- [15] L. D. ung Tráng & B. Teissier – « Sur la géométrie des surfaces complexes. I. Tangentes exceptionnelles », Amer. J. Math. 101 (1979), p. 420–452. MR528000
- [16] L. D. Tráng & B. Teissier – « Limites d’espaces tangents en géométrie analytique », Comment. Math. Helv.63 (1988), p. 540–578. Zbl0658.32010MR966949
- [17] H. Whitney – « Tangents to an analytic variety », Ann. of Math.81 (1965), p. 496–549. Zbl0152.27701MR192520
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.