Diophantine approximation on Veech surfaces
Pascal Hubert; Thomas A. Schmidt
Bulletin de la Société Mathématique de France (2012)
- Volume: 140, Issue: 4, page 551-568
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topHubert, Pascal, and Schmidt, Thomas A.. "Diophantine approximation on Veech surfaces." Bulletin de la Société Mathématique de France 140.4 (2012): 551-568. <http://eudml.org/doc/272605>.
@article{Hubert2012,
abstract = {We show that Y. Cheung’s general $Z$-continued fractions can be adapted to give approximation by saddle connection vectors for any compact translation surface. That is, we show the finiteness of his Minkowski constant for any compact translation surface. Furthermore, we show that for a Veech surface in standard form, each component of any saddle connection vector dominates its conjugates in an appropriate sense. The saddle connection continued fractions then allow one to recognize certain transcendental directions by their developments.},
author = {Hubert, Pascal, Schmidt, Thomas A.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {translation surfaces; transcendence; diophantine approximation},
language = {eng},
number = {4},
pages = {551-568},
publisher = {Société mathématique de France},
title = {Diophantine approximation on Veech surfaces},
url = {http://eudml.org/doc/272605},
volume = {140},
year = {2012},
}
TY - JOUR
AU - Hubert, Pascal
AU - Schmidt, Thomas A.
TI - Diophantine approximation on Veech surfaces
JO - Bulletin de la Société Mathématique de France
PY - 2012
PB - Société mathématique de France
VL - 140
IS - 4
SP - 551
EP - 568
AB - We show that Y. Cheung’s general $Z$-continued fractions can be adapted to give approximation by saddle connection vectors for any compact translation surface. That is, we show the finiteness of his Minkowski constant for any compact translation surface. Furthermore, we show that for a Veech surface in standard form, each component of any saddle connection vector dominates its conjugates in an appropriate sense. The saddle connection continued fractions then allow one to recognize certain transcendental directions by their developments.
LA - eng
KW - translation surfaces; transcendence; diophantine approximation
UR - http://eudml.org/doc/272605
ER -
References
top- [1] P. Arnoux & P. Hubert – « Fractions continues sur les surfaces de Veech », J. Anal. Math.81 (2000), p. 35–64. Zbl1029.11035MR1785277
- [2] P. Arnoux & T. A. Schmidt – « Veech surfaces with nonperiodic directions in the trace field », J. Mod. Dyn.3 (2009), p. 611–629. Zbl1186.37050MR2587089
- [3] K. Ball – « An elementary introduction to modern convex geometry », in Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, Cambridge Univ. Press, 1997, p. 1–58. Zbl0901.52002MR1491097
- [4] Y. Bugeaud – Approximation by algebraic numbers, Cambridge Tracts in Mathematics, vol. 160, Cambridge Univ. Press, 2004. Zbl1055.11002MR2136100
- [5] Y. Bugeaud, P. Hubert & T. A. Schmidt – « Transcendence with Rosen continued fractions », to appear in J. European Math. Soc. Zbl1331.11054MR2998829
- [6] K. Calta & J. Smillie – « Algebraically periodic translation surfaces », J. Mod. Dyn.2 (2008), p. 209–248. Zbl1151.57015MR2383267
- [7] Y. Cheung – « Hausdorff dimension of the set of singular pairs », Ann. of Math.173 (2011), p. 127–167. Zbl1241.11075MR2753601
- [8] Y. Cheung, P. Hubert & H. Masur – « Dichotomy for the Hausdorff dimension of the set of nonergodic directions », Invent. Math.183 (2011), p. 337–383. Zbl1220.37039MR2772084
- [9] P. Cohen & J. Wolfart – « Modular embeddings for some nonarithmetic Fuchsian groups », Acta Arith.56 (1990), p. 93–110. Zbl0717.14014MR1075639
- [10] A. Eskin, H. Masur & A. Zorich – « Moduli spaces of abelian differentials: the principal boundary, counting problems, and the Siegel-Veech constants », Publ. Math. I.H.É.S. 97 (2003), p. 61–179. Zbl1037.32013MR2010740
- [11] E. Gutkin & C. Judge – « Affine mappings of translation surfaces: geometry and arithmetic », Duke Math. J.103 (2000), p. 191–213. Zbl0965.30019MR1760625
- [12] P. Hubert & E. Lanneau – « Veech groups without parabolic elements », Duke Math. J.133 (2006), p. 335–346. Zbl1101.30044MR2225696
- [13] R. Kenyon & J. Smillie – « Billiards on rational-angled triangles », Comment. Math. Helv.75 (2000), p. 65–108. Zbl0967.37019MR1760496
- [14] E. Lanneau – « Infinite sequence of fixed point free pseudo-Anosov homeomorphisms on a family of genus two surface », Contemporary Mathematics532 (2010), p. 231–242. Zbl1217.37040MR2762143
- [15] W. J. LeVeque – Topics in number theory. Vols. 1 and 2, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1956. Zbl0070.03803MR80682
- [16] C. Maclachlan & A. W. Reid – The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Math., vol. 219, Springer, 2003. Zbl1025.57001MR1937957
- [17] S. Marmi, P. Moussa & J.-C. Yoccoz – « The cohomological equation for Roth-type interval exchange maps », J. Amer. Math. Soc.18 (2005), p. 823–872. Zbl1112.37002MR2163864
- [18] H. Masur & S. Tabachnikov – « Rational billiards and flat structures », in Handbook of dynamical systems, Vol. 1A, North-Holland, 2002, p. 1015–1089. Zbl1057.37034MR1928530
- [19] C. T. McMullen – « Billiards and Teichmüller curves on Hilbert modular surfaces », J. Amer. Math. Soc.16 (2003), p. 857–885. Zbl1030.32012MR1992827
- [20] M. Möller – « Variations of Hodge structures of a Teichmüller curve », J. Amer. Math. Soc.19 (2006), p. 327–344. Zbl1090.32004MR2188128
- [21] D. Rosen – « A class of continued fractions associated with certain properly discontinuous groups », Duke Math. J.21 (1954), p. 549–563. Zbl0056.30703MR65632
- [22] K. F. Roth – « Rational approximations to algebraic numbers », Mathematika 2 (1955), p. 1–20; corrigendum, 168. Zbl0064.28501MR72182
- [23] P. Schmutz Schaller & J. Wolfart – « Semi-arithmetic Fuchsian groups and modular embeddings », J. London Math. Soc.61 (2000), p. 13–24. Zbl0968.11022MR1745404
- [24] J. Smillie & C. Ulcigrai – « Geodesic flow on the Teichmüller disk of the regular octagon, cutting sequences and octagon continued fractions maps », in Dynamical numbers – interplay between dynamical systems and number theory, Contemp. Math., 2010, p. 29–65. Zbl1222.37012MR2762132
- [25] —, « Beyond Sturmian sequences: coding linear trajectories in the regular octagon », Proc. Lond. Math. Soc.102 (2011), p. 291–340. Zbl1230.37021MR2769116
- [26] W. P. Thurston – « On the geometry and dynamics of diffeomorphisms of surfaces », Bull. Amer. Math. Soc. (N.S.) 19 (1988), p. 417–431. Zbl0674.57008MR956596
- [27] W. A. Veech – « Gauss measures for transformations on the space of interval exchange maps », Ann. of Math.115 (1982), p. 201–242. Zbl0486.28014MR644019
- [28] —, « Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards », Invent. Math.97 (1989), p. 553–583. Zbl0676.32006MR1005006
- [29] Y. B. Vorobets – « Plane structures and billiards in rational polygons: the Veech alternative », Uspekhi Mat. Nauk51 (1996), p. 3–42. Zbl0897.58029MR1436653
- [30] M. Waldschmidt – Diophantine approximation on linear algebraic groups, Grund. Math. Wiss., vol. 326, Springer, 2000. Zbl0944.11024MR1756786
- [31] A. Zorich – « Flat surfaces », in Frontiers in number theory, physics, and geometry. I, Springer, 2006, p. 437–583. Zbl1129.32012MR2261104
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.