Diophantine approximation on Veech surfaces

Pascal Hubert; Thomas A. Schmidt

Bulletin de la Société Mathématique de France (2012)

  • Volume: 140, Issue: 4, page 551-568
  • ISSN: 0037-9484

Abstract

top
We show that Y. Cheung’s general Z -continued fractions can be adapted to give approximation by saddle connection vectors for any compact translation surface. That is, we show the finiteness of his Minkowski constant for any compact translation surface. Furthermore, we show that for a Veech surface in standard form, each component of any saddle connection vector dominates its conjugates in an appropriate sense. The saddle connection continued fractions then allow one to recognize certain transcendental directions by their developments.

How to cite

top

Hubert, Pascal, and Schmidt, Thomas A.. "Diophantine approximation on Veech surfaces." Bulletin de la Société Mathématique de France 140.4 (2012): 551-568. <http://eudml.org/doc/272605>.

@article{Hubert2012,
abstract = {We show that Y. Cheung’s general $Z$-continued fractions can be adapted to give approximation by saddle connection vectors for any compact translation surface. That is, we show the finiteness of his Minkowski constant for any compact translation surface. Furthermore, we show that for a Veech surface in standard form, each component of any saddle connection vector dominates its conjugates in an appropriate sense. The saddle connection continued fractions then allow one to recognize certain transcendental directions by their developments.},
author = {Hubert, Pascal, Schmidt, Thomas A.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {translation surfaces; transcendence; diophantine approximation},
language = {eng},
number = {4},
pages = {551-568},
publisher = {Société mathématique de France},
title = {Diophantine approximation on Veech surfaces},
url = {http://eudml.org/doc/272605},
volume = {140},
year = {2012},
}

TY - JOUR
AU - Hubert, Pascal
AU - Schmidt, Thomas A.
TI - Diophantine approximation on Veech surfaces
JO - Bulletin de la Société Mathématique de France
PY - 2012
PB - Société mathématique de France
VL - 140
IS - 4
SP - 551
EP - 568
AB - We show that Y. Cheung’s general $Z$-continued fractions can be adapted to give approximation by saddle connection vectors for any compact translation surface. That is, we show the finiteness of his Minkowski constant for any compact translation surface. Furthermore, we show that for a Veech surface in standard form, each component of any saddle connection vector dominates its conjugates in an appropriate sense. The saddle connection continued fractions then allow one to recognize certain transcendental directions by their developments.
LA - eng
KW - translation surfaces; transcendence; diophantine approximation
UR - http://eudml.org/doc/272605
ER -

References

top
  1. [1] P. Arnoux & P. Hubert – « Fractions continues sur les surfaces de Veech », J. Anal. Math.81 (2000), p. 35–64. Zbl1029.11035MR1785277
  2. [2] P. Arnoux & T. A. Schmidt – « Veech surfaces with nonperiodic directions in the trace field », J. Mod. Dyn.3 (2009), p. 611–629. Zbl1186.37050MR2587089
  3. [3] K. Ball – « An elementary introduction to modern convex geometry », in Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, Cambridge Univ. Press, 1997, p. 1–58. Zbl0901.52002MR1491097
  4. [4] Y. Bugeaud – Approximation by algebraic numbers, Cambridge Tracts in Mathematics, vol. 160, Cambridge Univ. Press, 2004. Zbl1055.11002MR2136100
  5. [5] Y. Bugeaud, P. Hubert & T. A. Schmidt – « Transcendence with Rosen continued fractions », to appear in J. European Math. Soc. Zbl1331.11054MR2998829
  6. [6] K. Calta & J. Smillie – « Algebraically periodic translation surfaces », J. Mod. Dyn.2 (2008), p. 209–248. Zbl1151.57015MR2383267
  7. [7] Y. Cheung – « Hausdorff dimension of the set of singular pairs », Ann. of Math.173 (2011), p. 127–167. Zbl1241.11075MR2753601
  8. [8] Y. Cheung, P. Hubert & H. Masur – « Dichotomy for the Hausdorff dimension of the set of nonergodic directions », Invent. Math.183 (2011), p. 337–383. Zbl1220.37039MR2772084
  9. [9] P. Cohen & J. Wolfart – « Modular embeddings for some nonarithmetic Fuchsian groups », Acta Arith.56 (1990), p. 93–110. Zbl0717.14014MR1075639
  10. [10] A. Eskin, H. Masur & A. Zorich – « Moduli spaces of abelian differentials: the principal boundary, counting problems, and the Siegel-Veech constants », Publ. Math. I.H.É.S. 97 (2003), p. 61–179. Zbl1037.32013MR2010740
  11. [11] E. Gutkin & C. Judge – « Affine mappings of translation surfaces: geometry and arithmetic », Duke Math. J.103 (2000), p. 191–213. Zbl0965.30019MR1760625
  12. [12] P. Hubert & E. Lanneau – « Veech groups without parabolic elements », Duke Math. J.133 (2006), p. 335–346. Zbl1101.30044MR2225696
  13. [13] R. Kenyon & J. Smillie – « Billiards on rational-angled triangles », Comment. Math. Helv.75 (2000), p. 65–108. Zbl0967.37019MR1760496
  14. [14] E. Lanneau – « Infinite sequence of fixed point free pseudo-Anosov homeomorphisms on a family of genus two surface », Contemporary Mathematics532 (2010), p. 231–242. Zbl1217.37040MR2762143
  15. [15] W. J. LeVeque – Topics in number theory. Vols. 1 and 2, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1956. Zbl0070.03803MR80682
  16. [16] C. Maclachlan & A. W. Reid – The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Math., vol. 219, Springer, 2003. Zbl1025.57001MR1937957
  17. [17] S. Marmi, P. Moussa & J.-C. Yoccoz – « The cohomological equation for Roth-type interval exchange maps », J. Amer. Math. Soc.18 (2005), p. 823–872. Zbl1112.37002MR2163864
  18. [18] H. Masur & S. Tabachnikov – « Rational billiards and flat structures », in Handbook of dynamical systems, Vol. 1A, North-Holland, 2002, p. 1015–1089. Zbl1057.37034MR1928530
  19. [19] C. T. McMullen – « Billiards and Teichmüller curves on Hilbert modular surfaces », J. Amer. Math. Soc.16 (2003), p. 857–885. Zbl1030.32012MR1992827
  20. [20] M. Möller – « Variations of Hodge structures of a Teichmüller curve », J. Amer. Math. Soc.19 (2006), p. 327–344. Zbl1090.32004MR2188128
  21. [21] D. Rosen – « A class of continued fractions associated with certain properly discontinuous groups », Duke Math. J.21 (1954), p. 549–563. Zbl0056.30703MR65632
  22. [22] K. F. Roth – « Rational approximations to algebraic numbers », Mathematika 2 (1955), p. 1–20; corrigendum, 168. Zbl0064.28501MR72182
  23. [23] P. Schmutz Schaller & J. Wolfart – « Semi-arithmetic Fuchsian groups and modular embeddings », J. London Math. Soc.61 (2000), p. 13–24. Zbl0968.11022MR1745404
  24. [24] J. Smillie & C. Ulcigrai – « Geodesic flow on the Teichmüller disk of the regular octagon, cutting sequences and octagon continued fractions maps », in Dynamical numbers – interplay between dynamical systems and number theory, Contemp. Math., 2010, p. 29–65. Zbl1222.37012MR2762132
  25. [25] —, « Beyond Sturmian sequences: coding linear trajectories in the regular octagon », Proc. Lond. Math. Soc.102 (2011), p. 291–340. Zbl1230.37021MR2769116
  26. [26] W. P. Thurston – « On the geometry and dynamics of diffeomorphisms of surfaces », Bull. Amer. Math. Soc. (N.S.) 19 (1988), p. 417–431. Zbl0674.57008MR956596
  27. [27] W. A. Veech – « Gauss measures for transformations on the space of interval exchange maps », Ann. of Math.115 (1982), p. 201–242. Zbl0486.28014MR644019
  28. [28] —, « Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards », Invent. Math.97 (1989), p. 553–583. Zbl0676.32006MR1005006
  29. [29] Y. B. Vorobets – « Plane structures and billiards in rational polygons: the Veech alternative », Uspekhi Mat. Nauk51 (1996), p. 3–42. Zbl0897.58029MR1436653
  30. [30] M. Waldschmidt – Diophantine approximation on linear algebraic groups, Grund. Math. Wiss., vol. 326, Springer, 2000. Zbl0944.11024MR1756786
  31. [31] A. Zorich – « Flat surfaces », in Frontiers in number theory, physics, and geometry. I, Springer, 2006, p. 437–583. Zbl1129.32012MR2261104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.