The search session has expired. Please query the service again.

Displaying similar documents to “Diophantine approximation on Veech surfaces”

The best Diophantine approximation functions by continued fractions

Jing Cheng Tong (1996)

Mathematica Bohemica

Similarity:

Let ξ = [ a 0 ; a 1 , a 2 , , a i , ] be an irrational number in simple continued fraction expansion, p i / q i = [ a 0 ; a 1 , a 2 , , a i ] , M i = q i 2 | ξ - p i / q i | . In this note we find a function G ( R , r ) such that M n + 1 < R and M n - 1 < r imply M n > G ( R , r ) , M n + 1 > R and M n - 1 > r imply M n < G ( R , r ) . Together with a result the author obtained, this shows that to find two best approximation functions H ˜ ( R , r ) and L ˜ ( R , r ) is a well-posed problem. This problem has not been solved yet.

On metric theory of Diophantine approximation for complex numbers

Zhengyu Chen (2015)

Acta Arithmetica

Similarity:

In 1941, R. J. Duffin and A. C. Schaeffer conjectured that for the inequality |α - m/n| < ψ(n)/n with g.c.d.(m,n) = 1, there are infinitely many solutions in positive integers m and n for almost all α ∈ ℝ if and only if n = 2 ϕ ( n ) ψ ( n ) / n = . As one of partial results, in 1978, J. D. Vaaler proved this conjecture under the additional condition ψ ( n ) = ( n - 1 ) . In this paper, we discuss the metric theory of Diophantine approximation over the imaginary quadratic field ℚ(√d) with a square-free integer d < 0, and show...

The Diophantine equation ( b n ) x + ( 2 n ) y = ( ( b + 2 ) n ) z

Min Tang, Quan-Hui Yang (2013)

Colloquium Mathematicae

Similarity:

Recently, Miyazaki and Togbé proved that for any fixed odd integer b ≥ 5 with b ≠ 89, the Diophantine equation b x + 2 y = ( b + 2 ) z has only the solution (x,y,z) = (1,1,1). We give an extension of this result.

On X 1 4 + 4 X 2 4 = X 3 8 + 4 X 4 8 and Y 1 4 = Y 2 4 + Y 3 4 + 4 Y 4 4

Susil Kumar Jena (2015)

Communications in Mathematics

Similarity:

The two related Diophantine equations: X 1 4 + 4 X 2 4 = X 3 8 + 4 X 4 8 and Y 1 4 = Y 2 4 + Y 3 4 + 4 Y 4 4 , have infinitely many nontrivial, primitive integral solutions. We give two parametric solutions, one for each of these equations.

Further remarks on Diophantine quintuples

Mihai Cipu (2015)

Acta Arithmetica

Similarity:

A set of m positive integers with the property that the product of any two of them is the predecessor of a perfect square is called a Diophantine m-tuple. Much work has been done attempting to prove that there exist no Diophantine quintuples. In this paper we give stringent conditions that should be met by a putative Diophantine quintuple. Among others, we show that any Diophantine quintuple a,b,c,d,e with a < b < c < d < e s a t i s f i e s d < 1.55·1072 a n d b < 6.21·1035 w h e n 4 a < b , w h i l e f o r b < 4 a o n e h a s e i t h e r c = a + b + 2√(ab+1)...