Displaying similar documents to “Diophantine approximation on Veech surfaces”

The best Diophantine approximation functions by continued fractions

Jing Cheng Tong (1996)

Mathematica Bohemica

Similarity:

Let ξ = [ a 0 ; a 1 , a 2 , , a i , ] be an irrational number in simple continued fraction expansion, p i / q i = [ a 0 ; a 1 , a 2 , , a i ] , M i = q i 2 | ξ - p i / q i | . In this note we find a function G ( R , r ) such that M n + 1 < R and M n - 1 < r imply M n > G ( R , r ) , M n + 1 > R and M n - 1 > r imply M n < G ( R , r ) . Together with a result the author obtained, this shows that to find two best approximation functions H ˜ ( R , r ) and L ˜ ( R , r ) is a well-posed problem. This problem has not been solved yet.

On metric theory of Diophantine approximation for complex numbers

Zhengyu Chen (2015)

Acta Arithmetica

Similarity:

In 1941, R. J. Duffin and A. C. Schaeffer conjectured that for the inequality |α - m/n| < ψ(n)/n with g.c.d.(m,n) = 1, there are infinitely many solutions in positive integers m and n for almost all α ∈ ℝ if and only if n = 2 ϕ ( n ) ψ ( n ) / n = . As one of partial results, in 1978, J. D. Vaaler proved this conjecture under the additional condition ψ ( n ) = ( n - 1 ) . In this paper, we discuss the metric theory of Diophantine approximation over the imaginary quadratic field ℚ(√d) with a square-free integer d < 0, and show...

The Diophantine equation ( b n ) x + ( 2 n ) y = ( ( b + 2 ) n ) z

Min Tang, Quan-Hui Yang (2013)

Colloquium Mathematicae

Similarity:

Recently, Miyazaki and Togbé proved that for any fixed odd integer b ≥ 5 with b ≠ 89, the Diophantine equation b x + 2 y = ( b + 2 ) z has only the solution (x,y,z) = (1,1,1). We give an extension of this result.

On X 1 4 + 4 X 2 4 = X 3 8 + 4 X 4 8 and Y 1 4 = Y 2 4 + Y 3 4 + 4 Y 4 4

Susil Kumar Jena (2015)

Communications in Mathematics

Similarity:

The two related Diophantine equations: X 1 4 + 4 X 2 4 = X 3 8 + 4 X 4 8 and Y 1 4 = Y 2 4 + Y 3 4 + 4 Y 4 4 , have infinitely many nontrivial, primitive integral solutions. We give two parametric solutions, one for each of these equations.

Further remarks on Diophantine quintuples

Mihai Cipu (2015)

Acta Arithmetica

Similarity:

A set of m positive integers with the property that the product of any two of them is the predecessor of a perfect square is called a Diophantine m-tuple. Much work has been done attempting to prove that there exist no Diophantine quintuples. In this paper we give stringent conditions that should be met by a putative Diophantine quintuple. Among others, we show that any Diophantine quintuple a,b,c,d,e with a < b < c < d < e s a t i s f i e s d < 1.55·1072 a n d b < 6.21·1035 w h e n 4 a < b , w h i l e f o r b < 4 a o n e h a s e i t h e r c = a + b + 2√(ab+1)...