Minimal systems and distributionally scrambled sets
Bulletin de la Société Mathématique de France (2012)
- Volume: 140, Issue: 3, page 401-439
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. L. Adler, A. G. Konheim & M. H. McAndrew – « Topological entropy », Trans. Amer. Math. Soc.114 (1965), p. 309–319. Zbl0127.13102MR175106
- [2] E. Akin – « Lectures on Cantor and Mycielski sets for dynamical systems », in Chapel Hill Ergodic Theory Workshops, Contemp. Math., vol. 356, Amer. Math. Soc., 2004, p. 21–79. Zbl1064.37015MR2087588
- [3] F. Balibrea, B. Schweizer, A. Sklar & J. Smítal – « Generalized specification property and distributional chaos », Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), p. 1683–1694, Dynamical systems and functional equations (Murcia, 2000). Zbl1056.37006MR2015618
- [4] F. Balibrea & J. Smítal – « Strong distributional chaos and minimal sets », Topology Appl.156 (2009), p. 1673–1678. Zbl1175.37034MR2521703
- [5] F. Balibrea, J. Smítal & M. Štefánková – « The three versions of distributional chaos », Chaos Solitons Fractals23 (2005), p. 1581–1583. Zbl1069.37013MR2101573
- [6] J. Banks – « Regular periodic decompositions for topologically transitive maps », Ergodic Theory Dynam. Systems17 (1997), p. 505–529. Zbl0921.54029MR1452178
- [7] F. Blanchard, B. Host & S. Ruette – « Asymptotic pairs in positive-entropy systems », Ergodic Theory Dynam. Systems22 (2002), p. 671–686. Zbl1018.37005MR1908549
- [8] F. Blanchard & J. Kwiatkowski – « Minimal self-joinings and positive topological entropy. II », Studia Math.128 (1998), p. 121–133. Zbl0909.54034MR1490816
- [9] T. Downarowicz – « Survey of odometers and Toeplitz flows », in Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., 2005, p. 7–37. Zbl1096.37002MR2180227
- [10] H. Furstenberg – « Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation », Math. Systems Theory1 (1967), p. 1–49. Zbl0146.28502MR213508
- [11] —, Recurrence in ergodic theory and combinatorial number theory, Princeton Univ. Press, 1981. Zbl0459.28023MR603625
- [12] C. Grillenberger – « Constructions of strictly ergodic systems. I. Given entropy », Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), p. 323–334. Zbl0253.28004MR340544
- [13] —, « Constructions of strictly ergodic systems. II. -Systems », Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), p. 335–342. Zbl0253.28005MR340545
- [14] C. Grillenberger & P. Shields – « Construction of strictly ergodic systems. III. Bernoulli systems », Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1975/76), p. 215–217. Zbl0348.60046MR396908
- [15] L. He & C. Liu – « Invariant measures and uniform positive entropy property for inverse limits », Appl. Math. J. Chinese Univ. Ser. B 14 (1999), p. 265–272, A Chinese summary appears in Gaoxiao Yingyong Shuxue Xuebao Ser. A 14 (1999), no. 3, 367. Zbl0944.28015MR1713534
- [16] W. Huang & X. Ye – « Devaney’s chaos and 2-scattering imply Li-Yorke’s chaos », Topology117 (2002), p. 259–272. Zbl0997.54061MR1874089
- [17] W. Huang, S. Shao & X. Ye – « Mixing via sequence entropy », in Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., 2005, p. 101–122. Zbl1103.37002MR2180232
- [18] W. Huang & X. Ye – « A local variational relation and applications », Israel J. Math.151 (2006), p. 237–279. Zbl1122.37013MR2214126
- [19] D. Kerr & H. Li – « Independence in topological and -dynamics », Math. Ann.338 (2007), p. 869–926. Zbl1131.46046MR2317754
- [20] P. Kurka – Topological and symbolic dynamics, Cours Spécialisés, vol. 11, Soc. Math. France, 2003. Zbl1038.37011MR2041676
- [21] T. Y. Li & J. A. Yorke – « Period three implies chaos », Amer. Math. Monthly82 (1975), p. 985–992. Zbl0351.92021MR385028
- [22] G. Liao & L. Wang – « Almost periodicity and distributional chaos », in Foundations of computational mathematics (Hong Kong, 2000), World Sci. Publ., River Edge, NJ, 2002, p. 189–210. Zbl1010.37019MR2021982
- [23] P. Oprocha – « Distributional chaos revisited », Trans. Amer. Math. Soc.361 (2009), p. 4901–4925. Zbl1179.37017MR2506431
- [24] —, « Weak mixing and product recurrence », Ann. Inst. Fourier60 (2010), p. 1233–1257. Zbl1203.37026MR2722240
- [25] P. Oprocha & M. Štefánková – « Specification property and distributional chaos almost everywhere », Proc. Amer. Math. Soc.136 (2008), p. 3931–3940. Zbl1159.37004MR2425733
- [26] P. Oprocha & P. Wilczyński – « Distributional chaos via semiconjugacy », Nonlinearity20 (2007), p. 2661–2679. Zbl1131.37017MR2361250
- [27] R. Pikuła – « On some notions of chaos in dimension zero », Colloq. Math.107 (2007), p. 167–177. Zbl1130.37327MR2284159
- [28] B. Schweizer, A. Sklar & J. Smítal – « Distributional (and other) chaos and its measurement », Real Anal. Exchange 26 (2000/01), p. 495–524. Zbl1012.37022MR1844132
- [29] B. Schweizer & J. Smítal – « Measures of chaos and a spectral decomposition of dynamical systems on the interval », Trans. Amer. Math. Soc.344 (1994), p. 737–754. Zbl0812.58062MR1227094
- [30] A. Sklar & J. Smítal – « Distributional chaos on compact metric spaces via specification properties », J. Math. Anal. Appl.241 (2000), p. 181–188. Zbl1060.37012MR1739200
- [31] F. Tan & J. Xiong – « Chaos via Furstenberg family couple », Topology Appl.156 (2009), p. 525–532. Zbl1161.37019MR2492300
- [32] S. Williams – « Toeplitz minimal flows which are not uniquely ergodic », Z. Wahrsch. Verw. Gebiete67 (1984), p. 95–107. Zbl0584.28007MR756807