Minimal systems and distributionally scrambled sets
Bulletin de la Société Mathématique de France (2012)
- Volume: 140, Issue: 3, page 401-439
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topOprocha, Piotr. "Minimal systems and distributionally scrambled sets." Bulletin de la Société Mathématique de France 140.3 (2012): 401-439. <http://eudml.org/doc/272610>.
@article{Oprocha2012,
abstract = {In this paper we investigate numerous constructions of minimal systems from the point of view of $(\mathcal \{F\}_1,\mathcal \{F\}_2)$-chaos (but most of our results concern the particular cases of distributional chaos of type $1$ and $2$). We consider standard classes of systems, such as Toeplitz flows, Grillenberger $K$-systems or Blanchard-Kwiatkowski extensions of the Chacón flow, proving that all of them are DC2. An example of DC1 minimal system with positive topological entropy is also introduced. The above mentioned results answer a few open problems known from the literature.},
author = {Oprocha, Piotr},
journal = {Bulletin de la Société Mathématique de France},
keywords = {chaotic pair; scrambled set; Mycielski set; distributional chaos; Li-Yorke chaos; filter},
language = {eng},
number = {3},
pages = {401-439},
publisher = {Société mathématique de France},
title = {Minimal systems and distributionally scrambled sets},
url = {http://eudml.org/doc/272610},
volume = {140},
year = {2012},
}
TY - JOUR
AU - Oprocha, Piotr
TI - Minimal systems and distributionally scrambled sets
JO - Bulletin de la Société Mathématique de France
PY - 2012
PB - Société mathématique de France
VL - 140
IS - 3
SP - 401
EP - 439
AB - In this paper we investigate numerous constructions of minimal systems from the point of view of $(\mathcal {F}_1,\mathcal {F}_2)$-chaos (but most of our results concern the particular cases of distributional chaos of type $1$ and $2$). We consider standard classes of systems, such as Toeplitz flows, Grillenberger $K$-systems or Blanchard-Kwiatkowski extensions of the Chacón flow, proving that all of them are DC2. An example of DC1 minimal system with positive topological entropy is also introduced. The above mentioned results answer a few open problems known from the literature.
LA - eng
KW - chaotic pair; scrambled set; Mycielski set; distributional chaos; Li-Yorke chaos; filter
UR - http://eudml.org/doc/272610
ER -
References
top- [1] R. L. Adler, A. G. Konheim & M. H. McAndrew – « Topological entropy », Trans. Amer. Math. Soc.114 (1965), p. 309–319. Zbl0127.13102MR175106
- [2] E. Akin – « Lectures on Cantor and Mycielski sets for dynamical systems », in Chapel Hill Ergodic Theory Workshops, Contemp. Math., vol. 356, Amer. Math. Soc., 2004, p. 21–79. Zbl1064.37015MR2087588
- [3] F. Balibrea, B. Schweizer, A. Sklar & J. Smítal – « Generalized specification property and distributional chaos », Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), p. 1683–1694, Dynamical systems and functional equations (Murcia, 2000). Zbl1056.37006MR2015618
- [4] F. Balibrea & J. Smítal – « Strong distributional chaos and minimal sets », Topology Appl.156 (2009), p. 1673–1678. Zbl1175.37034MR2521703
- [5] F. Balibrea, J. Smítal & M. Štefánková – « The three versions of distributional chaos », Chaos Solitons Fractals23 (2005), p. 1581–1583. Zbl1069.37013MR2101573
- [6] J. Banks – « Regular periodic decompositions for topologically transitive maps », Ergodic Theory Dynam. Systems17 (1997), p. 505–529. Zbl0921.54029MR1452178
- [7] F. Blanchard, B. Host & S. Ruette – « Asymptotic pairs in positive-entropy systems », Ergodic Theory Dynam. Systems22 (2002), p. 671–686. Zbl1018.37005MR1908549
- [8] F. Blanchard & J. Kwiatkowski – « Minimal self-joinings and positive topological entropy. II », Studia Math.128 (1998), p. 121–133. Zbl0909.54034MR1490816
- [9] T. Downarowicz – « Survey of odometers and Toeplitz flows », in Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., 2005, p. 7–37. Zbl1096.37002MR2180227
- [10] H. Furstenberg – « Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation », Math. Systems Theory1 (1967), p. 1–49. Zbl0146.28502MR213508
- [11] —, Recurrence in ergodic theory and combinatorial number theory, Princeton Univ. Press, 1981. Zbl0459.28023MR603625
- [12] C. Grillenberger – « Constructions of strictly ergodic systems. I. Given entropy », Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), p. 323–334. Zbl0253.28004MR340544
- [13] —, « Constructions of strictly ergodic systems. II. -Systems », Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), p. 335–342. Zbl0253.28005MR340545
- [14] C. Grillenberger & P. Shields – « Construction of strictly ergodic systems. III. Bernoulli systems », Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1975/76), p. 215–217. Zbl0348.60046MR396908
- [15] L. He & C. Liu – « Invariant measures and uniform positive entropy property for inverse limits », Appl. Math. J. Chinese Univ. Ser. B 14 (1999), p. 265–272, A Chinese summary appears in Gaoxiao Yingyong Shuxue Xuebao Ser. A 14 (1999), no. 3, 367. Zbl0944.28015MR1713534
- [16] W. Huang & X. Ye – « Devaney’s chaos and 2-scattering imply Li-Yorke’s chaos », Topology117 (2002), p. 259–272. Zbl0997.54061MR1874089
- [17] W. Huang, S. Shao & X. Ye – « Mixing via sequence entropy », in Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., 2005, p. 101–122. Zbl1103.37002MR2180232
- [18] W. Huang & X. Ye – « A local variational relation and applications », Israel J. Math.151 (2006), p. 237–279. Zbl1122.37013MR2214126
- [19] D. Kerr & H. Li – « Independence in topological and -dynamics », Math. Ann.338 (2007), p. 869–926. Zbl1131.46046MR2317754
- [20] P. Kurka – Topological and symbolic dynamics, Cours Spécialisés, vol. 11, Soc. Math. France, 2003. Zbl1038.37011MR2041676
- [21] T. Y. Li & J. A. Yorke – « Period three implies chaos », Amer. Math. Monthly82 (1975), p. 985–992. Zbl0351.92021MR385028
- [22] G. Liao & L. Wang – « Almost periodicity and distributional chaos », in Foundations of computational mathematics (Hong Kong, 2000), World Sci. Publ., River Edge, NJ, 2002, p. 189–210. Zbl1010.37019MR2021982
- [23] P. Oprocha – « Distributional chaos revisited », Trans. Amer. Math. Soc.361 (2009), p. 4901–4925. Zbl1179.37017MR2506431
- [24] —, « Weak mixing and product recurrence », Ann. Inst. Fourier60 (2010), p. 1233–1257. Zbl1203.37026MR2722240
- [25] P. Oprocha & M. Štefánková – « Specification property and distributional chaos almost everywhere », Proc. Amer. Math. Soc.136 (2008), p. 3931–3940. Zbl1159.37004MR2425733
- [26] P. Oprocha & P. Wilczyński – « Distributional chaos via semiconjugacy », Nonlinearity20 (2007), p. 2661–2679. Zbl1131.37017MR2361250
- [27] R. Pikuła – « On some notions of chaos in dimension zero », Colloq. Math.107 (2007), p. 167–177. Zbl1130.37327MR2284159
- [28] B. Schweizer, A. Sklar & J. Smítal – « Distributional (and other) chaos and its measurement », Real Anal. Exchange 26 (2000/01), p. 495–524. Zbl1012.37022MR1844132
- [29] B. Schweizer & J. Smítal – « Measures of chaos and a spectral decomposition of dynamical systems on the interval », Trans. Amer. Math. Soc.344 (1994), p. 737–754. Zbl0812.58062MR1227094
- [30] A. Sklar & J. Smítal – « Distributional chaos on compact metric spaces via specification properties », J. Math. Anal. Appl.241 (2000), p. 181–188. Zbl1060.37012MR1739200
- [31] F. Tan & J. Xiong – « Chaos via Furstenberg family couple », Topology Appl.156 (2009), p. 525–532. Zbl1161.37019MR2492300
- [32] S. Williams – « Toeplitz minimal flows which are not uniquely ergodic », Z. Wahrsch. Verw. Gebiete67 (1984), p. 95–107. Zbl0584.28007MR756807
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.