Displaying similar documents to “Minimal systems and distributionally scrambled sets”

Topological disjointness from entropy zero systems

Wen Huang, Kyewon Koh Park, Xiangdong Ye (2007)

Bulletin de la Société Mathématique de France

Similarity:

The properties of topological dynamical systems ( X , T ) which are disjoint from all minimal systems of zero entropy, 0 , are investigated. Unlike the measurable case, it is known that topological K -systems make up a proper subset of the systems which are disjoint from 0 . We show that ( X , T ) has an invariant measure with full support, and if in addition ( X , T ) is transitive, then ( X , T ) is weakly mixing. A transitive diagonal system with only one minimal point is constructed. As a consequence, there exists...

On some properties of three-dimensional minimal sets in 4

Tien Duc Luu (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We prove in this paper the Hölder regularity of Almgren minimal sets of dimension 3 in 4 around a 𝕐 -point and the existence of a point of particular type of a Mumford-Shah minimal set in 4 , which is very close to a 𝕋 . This will give a local description of minimal sets of dimension 3 in 4 around a singular point and a property of Mumford-Shah minimal sets in 4 .

Zero-set property of o-minimal indefinitely Peano differentiable functions

Andreas Fischer (2008)

Annales Polonici Mathematici

Similarity:

Given an o-minimal expansion ℳ of a real closed field R which is not polynomially bounded. Let denote the definable indefinitely Peano differentiable functions. If we further assume that ℳ admits cell decomposition, each definable closed subset A of Rⁿ is the zero-set of a function f:Rⁿ → R. This implies approximation of definable continuous functions and gluing of functions defined on closed definable sets.

Interaction between cellularity of Alexandroff spaces and entropy of generalized shift maps

Fatemah Ayatollah Zadeh Shirazi, Sahar Karimzadeh Dolatabad, Sara Shamloo (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In the following text for a discrete finite nonempty set K and a self-map ϕ : X X we investigate interaction between different entropies of generalized shift σ ϕ : K X K X , ( x α ) α X ( x ϕ ( α ) ) α X and cellularities of some Alexandroff topologies on X .

The generalized Toeplitz operators on the Fock space F α 2

Chunxu Xu, Tao Yu (2024)

Czechoslovak Mathematical Journal

Similarity:

Let μ be a positive Borel measure on the complex plane n and let j = ( j 1 , , j n ) with j i . We study the generalized Toeplitz operators T μ ( j ) on the Fock space F α 2 . We prove that T μ ( j ) is bounded (or compact) on F α 2 if and only if μ is a Fock-Carleson measure (or vanishing Fock-Carleson measure). Furthermore, we give a necessary and sufficient condition for T μ ( j ) to be in the Schatten p -class for 1 p < .

Area differences under analytic maps and operators

Mehmet Çelik, Luke Duane-Tessier, Ashley Marcial Rodriguez, Daniel Rodriguez, Aden Shaw (2024)

Czechoslovak Mathematical Journal

Similarity:

Motivated by the relationship between the area of the image of the unit disk under a holomorphic mapping h and that of z h , we study various L 2 norms for T ϕ ( h ) , where T ϕ is the Toeplitz operator with symbol ϕ . In Theorem , given polynomials p and q we find a symbol ϕ such that T ϕ ( p ) = q . We extend some of our results to the polydisc.

Schatten class generalized Toeplitz operators on the Bergman space

Chunxu Xu, Tao Yu (2021)

Czechoslovak Mathematical Journal

Similarity:

Let μ be a finite positive measure on the unit disk and let j 1 be an integer. D. Suárez (2015) gave some conditions for a generalized Toeplitz operator T μ ( j ) to be bounded or compact. We first give a necessary and sufficient condition for T μ ( j ) to be in the Schatten p -class for 1 p < on the Bergman space A 2 , and then give a sufficient condition for T μ ( j ) to be in the Schatten p -class ( 0 < p < 1 ) on A 2 . We also discuss the generalized Toeplitz operators with general bounded symbols. If ϕ L ( D , d A ) and 1 < p < , we define the generalized...

The relationship between K u 2 v H 2 and inner functions

Xiaoyuan Yang (2024)

Czechoslovak Mathematical Journal

Similarity:

Let u be an inner function and K u 2 be the corresponding model space. For an inner function v , the subspace v H 2 is an invariant subspace of the unilateral shift operator on H 2 . In this article, using the structure of a Toeplitz kernel ker T u ¯ v , we study the intersection K u 2 v H 2 by properties of inner functions u and v ( v u ) . If K u 2 v H 2 { 0 } , then there exists a triple ( B , b , g ) such that u ¯ v = λ b B O g ¯ g , where the triple ( B , b , g ) means that B and b are Blaschke products, g is an invertible function in H , O g denotes the outer factor...

Topological dynamics of unordered Ramsey structures

Moritz Müller, András Pongrácz (2015)

Fundamenta Mathematicae

Similarity:

We investigate the connections between Ramsey properties of Fraïssé classes and the universal minimal flow M ( G ) of the automorphism group G of their Fraïssé limits. As an extension of a result of Kechris, Pestov and Todorcevic (2005) we show that if the class has finite Ramsey degree for embeddings, then this degree equals the size of M ( G ) . We give a partial answer to a question of Angel, Kechris and Lyons (2014) showing that if is a relational Ramsey class and G is amenable, then M ( G ) admits...

Balcar's theorem on supports

Lev Bukovský (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In A theorem on supports in the theory of semisets [Comment. Math. Univ. Carolinae 14 (1973), no. 1, 1–6] B. Balcar showed that if σ D M is a support, M being an inner model of ZFC, and 𝒫 ( D σ ) M = r ` ` σ with r M , then r determines a preorder " " of D such that σ becomes a filter on ( D , ) generic over M . We show that if the relation r is replaced by a function 𝒫 ( D σ ) M = f - 1 ( σ ) , then there exists an equivalence relation " " on D and a partial order on D / such that D / is a complete Boolean algebra, σ / is a generic filter and [ f ( u ) ] = - ( u / ) for...

Renormings of c 0 and the minimal displacement problem

Łukasz Piasecki (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The aim of this paper is to show that for every Banach space ( X , · ) containing asymptotically isometric copy of the space c 0 there is a bounded, closed and convex set C X with the Chebyshev radius r ( C ) = 1 such that for every k 1 there exists a k -contractive mapping T : C C with x - T x > 1 1 / k for any x C .

Nonconventional limit theorems in averaging

Yuri Kifer (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider “nonconventional” averaging setup in the form d X ε ( t ) d t = ε B ( X ε ( t ) , 𝛯 ( q 1 ( t ) ) , 𝛯 ( q 2 ( t ) ) , ... , 𝛯 ( q ( t ) ) ) where 𝛯 ( t ) , t 0 is either a stochastic process or a dynamical system with sufficiently fast mixing while q j ( t ) = α j t , α 1 l t ; α 2 l t ; l t ; α k and q j , j = k + 1 , ... , grow faster than linearly. We show that the properly normalized error term in the “nonconventional” averaging principle is asymptotically Gaussian.

On a magnetic characterization of spectral minimal partitions

Bernard Helffer, Thomas Hoffmann-Ostenhof (2013)

Journal of the European Mathematical Society

Similarity:

Given a bounded open set Ω in n (or in a Riemannian manifold) and a partition of Ω by k open sets D j , we consider the quantity 𝚖𝚊𝚡 j λ ( D j ) where λ ( D j ) is the ground state energy of the Dirichlet realization of the Laplacian in D j . If we denote by k ( Ω ) the infimum over all the k -partitions of 𝚖𝚊𝚡 j λ ( D j ) , a minimal k -partition is then a partition which realizes the infimum. When k = 2 , we find the two nodal domains of a second eigenfunction, but the analysis of higher k ’s is non trivial and quite interesting. In this...

On open maps and related functions over the Salbany compactification

Mbekezeli Nxumalo (2024)

Archivum Mathematicum

Similarity:

Given a topological space X , let 𝒰 X and η X : X 𝒰 X denote, respectively, the Salbany compactification of X and the compactification map called the Salbany map of X . For every continuous function f : X Y , there is a continuous function 𝒰 f : 𝒰 X 𝒰 Y , called the Salbany lift of f , satisfying ( 𝒰 f ) η X = η Y f . If a continuous function f : X Y has a stably compact codomain Y , then there is a Salbany extension F : 𝒰 X Y of f , not necessarily unique, such that F η X = f . In this paper, we give a condition on a space such that its Salbany map is open. In...

Theoretical analysis for 1 - 2 minimization with partial support information

Haifeng Li, Leiyan Guo (2025)

Applications of Mathematics

Similarity:

We investigate the recovery of k -sparse signals using the 1 - 2 minimization model with prior support set information. The prior support set information, which is believed to contain the indices of nonzero signal elements, significantly enhances the performance of compressive recovery by improving accuracy, efficiency, reducing complexity, expanding applicability, and enhancing robustness. We assume k -sparse signals 𝐱 with the prior support T which is composed of g true indices and b wrong...