Pulling back cohomology classes and dynamical degrees of monomial maps
Bulletin de la Société Mathématique de France (2012)
- Volume: 140, Issue: 4, page 533-549
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topLin, Jan-Li. "Pulling back cohomology classes and dynamical degrees of monomial maps." Bulletin de la Société Mathématique de France 140.4 (2012): 533-549. <http://eudml.org/doc/272649>.
@article{Lin2012,
abstract = {We study the pullback maps on cohomology groups for equivariant rational maps (i.e., monomial maps) on toric varieties. Our method is based on the intersection theory on toric varieties. We use the method to determine the dynamical degrees of monomial maps and compute the degrees of the Cremona involution.},
author = {Lin, Jan-Li},
journal = {Bulletin de la Société Mathématique de France},
keywords = {dynamical degrees; topological entropy; monomial maps},
language = {eng},
number = {4},
pages = {533-549},
publisher = {Société mathématique de France},
title = {Pulling back cohomology classes and dynamical degrees of monomial maps},
url = {http://eudml.org/doc/272649},
volume = {140},
year = {2012},
}
TY - JOUR
AU - Lin, Jan-Li
TI - Pulling back cohomology classes and dynamical degrees of monomial maps
JO - Bulletin de la Société Mathématique de France
PY - 2012
PB - Société mathématique de France
VL - 140
IS - 4
SP - 533
EP - 549
AB - We study the pullback maps on cohomology groups for equivariant rational maps (i.e., monomial maps) on toric varieties. Our method is based on the intersection theory on toric varieties. We use the method to determine the dynamical degrees of monomial maps and compute the degrees of the Cremona involution.
LA - eng
KW - dynamical degrees; topological entropy; monomial maps
UR - http://eudml.org/doc/272649
ER -
References
top- [1] J.-C. Anglès d’Auriac, J.-M. Maillard & C. M. Viallet – « On the complexity of some birational transformations », J. Phys. A39 (2006), p. 3641–3654. Zbl1086.14504MR2220002
- [2] E. Bedford & K. Kim – « On the degree growth of birational mappings in higher dimension », J. Geom. Anal.14 (2004), p. 567–596. Zbl1067.37054MR2111418
- [3] E. Bedford & T. T. Truong – « Degree complexity of birational maps related to matrix inversion », Comm. Math. Phys.298 (2010), p. 357–368. Zbl1205.15009MR2669440
- [4] V. I. Danilov – « The geometry of toric varieties », Russ. Math. Surv.33 (1978), p. 97–154. Zbl0425.14013MR495499
- [5] J. Diller & C. Favre – « Dynamics of bimeromorphic maps of surfaces », Amer. J. Math.123 (2001), p. 1135–1169. Zbl1112.37308MR1867314
- [6] T.-C. Dinh & V.-A. Nguyên – « Comparison of dynamical degrees for semi-conjugate meromorphic maps », Comment. Math. Helv.86 (2011), p. 817–840. Zbl1279.32018MR2851870
- [7] T.-C. Dinh & N. Sibony – « Une borne supérieure pour l’entropie topologique d’une application rationnelle », Ann. of Math.161 (2005), p. 1637–1644. Zbl1084.54013MR2180409
- [8] C. Favre – « Les applications monomiales en deux dimensions », Michigan Math. J.51 (2003), p. 467–475. Zbl1053.37021MR2021001
- [9] C. Favre & M. Jonsson – « Dynamical compactifications of », Ann. of Math.173 (2011), p. 211–248. Zbl1244.32012MR2753603
- [10] C. Favre & E. Wulcan – « Degree growth of monomial maps and mcmullen’s polytope algebra », preprint arXiv:1011.2854, to appear in Indiana Univ. Math. J. Zbl1291.37058MR3043585
- [11] W. Fulton – Introduction to toric varieties, Annals of Math. Studies, vol. 131, 1993. Zbl0813.14039MR1234037
- [12] —, Intersection theory, Springer, 1998.
- [13] W. Fulton & B. Sturmfels – « Intersection theory on toric varieties », Topology36 (1997), p. 335–353. Zbl0885.14025MR1415592
- [14] G. Gonzalez-Sprinberg & I. Pan – « On characteristic classes of determinantal Cremona transformations », Math. Ann.335 (2006), p. 479–487. Zbl1097.14011MR2221122
- [15] V. Guedj – « Propriétés ergodiques des applications rationnelles », Panoramas & Synthèses 30 (2010), p. 97–202. Zbl06114593MR2932434
- [16] B. Hasselblatt & J. Propp – « Degree-growth of monomial maps », Ergodic Theory Dynam. Systems27 (2007), p. 1375–1397. Zbl1143.37032MR2358970
- [17] M. Jonsson & E. Wulcan – « Stabilization of monomial maps », Michigan Math. J.60 (2011), p. 629–660. Zbl1247.37040MR2861092
- [18] J.-L. Lin – « Algebraic stability and degree growth of monomial maps », Math. Z.271 (2012), p. 293–311. Zbl1247.32018MR2917145
- [19] V.-A. Nguyên – « Algebraic degrees for iterates of meromorphic self-maps of », Publ. Mat.50 (2006), p. 457–473. Zbl1112.37035MR2273670
- [20] K. Oguiso – « A remark on dynamical degrees of automorphisms of hyperkähler manifolds », Manuscripta Math.130 (2009), p. 101–111. Zbl1172.14026MR2533769
- [21] A. Russakovskii & B. Shiffman – « Value distribution for sequences of rational mappings and complex dynamics », Indiana Univ. Math. J.46 (1997), p. 897–932. Zbl0901.58023MR1488341
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.