Pulling back cohomology classes and dynamical degrees of monomial maps

Jan-Li Lin

Bulletin de la Société Mathématique de France (2012)

  • Volume: 140, Issue: 4, page 533-549
  • ISSN: 0037-9484

Abstract

top
We study the pullback maps on cohomology groups for equivariant rational maps (i.e., monomial maps) on toric varieties. Our method is based on the intersection theory on toric varieties. We use the method to determine the dynamical degrees of monomial maps and compute the degrees of the Cremona involution.

How to cite

top

Lin, Jan-Li. "Pulling back cohomology classes and dynamical degrees of monomial maps." Bulletin de la Société Mathématique de France 140.4 (2012): 533-549. <http://eudml.org/doc/272649>.

@article{Lin2012,
abstract = {We study the pullback maps on cohomology groups for equivariant rational maps (i.e., monomial maps) on toric varieties. Our method is based on the intersection theory on toric varieties. We use the method to determine the dynamical degrees of monomial maps and compute the degrees of the Cremona involution.},
author = {Lin, Jan-Li},
journal = {Bulletin de la Société Mathématique de France},
keywords = {dynamical degrees; topological entropy; monomial maps},
language = {eng},
number = {4},
pages = {533-549},
publisher = {Société mathématique de France},
title = {Pulling back cohomology classes and dynamical degrees of monomial maps},
url = {http://eudml.org/doc/272649},
volume = {140},
year = {2012},
}

TY - JOUR
AU - Lin, Jan-Li
TI - Pulling back cohomology classes and dynamical degrees of monomial maps
JO - Bulletin de la Société Mathématique de France
PY - 2012
PB - Société mathématique de France
VL - 140
IS - 4
SP - 533
EP - 549
AB - We study the pullback maps on cohomology groups for equivariant rational maps (i.e., monomial maps) on toric varieties. Our method is based on the intersection theory on toric varieties. We use the method to determine the dynamical degrees of monomial maps and compute the degrees of the Cremona involution.
LA - eng
KW - dynamical degrees; topological entropy; monomial maps
UR - http://eudml.org/doc/272649
ER -

References

top
  1. [1] J.-C. Anglès d’Auriac, J.-M. Maillard & C. M. Viallet – « On the complexity of some birational transformations », J. Phys. A39 (2006), p. 3641–3654. Zbl1086.14504MR2220002
  2. [2] E. Bedford & K. Kim – « On the degree growth of birational mappings in higher dimension », J. Geom. Anal.14 (2004), p. 567–596. Zbl1067.37054MR2111418
  3. [3] E. Bedford & T. T. Truong – « Degree complexity of birational maps related to matrix inversion », Comm. Math. Phys.298 (2010), p. 357–368. Zbl1205.15009MR2669440
  4. [4] V. I. Danilov – « The geometry of toric varieties », Russ. Math. Surv.33 (1978), p. 97–154. Zbl0425.14013MR495499
  5. [5] J. Diller & C. Favre – « Dynamics of bimeromorphic maps of surfaces », Amer. J. Math.123 (2001), p. 1135–1169. Zbl1112.37308MR1867314
  6. [6] T.-C. Dinh & V.-A. Nguyên – « Comparison of dynamical degrees for semi-conjugate meromorphic maps », Comment. Math. Helv.86 (2011), p. 817–840. Zbl1279.32018MR2851870
  7. [7] T.-C. Dinh & N. Sibony – « Une borne supérieure pour l’entropie topologique d’une application rationnelle », Ann. of Math.161 (2005), p. 1637–1644. Zbl1084.54013MR2180409
  8. [8] C. Favre – « Les applications monomiales en deux dimensions », Michigan Math. J.51 (2003), p. 467–475. Zbl1053.37021MR2021001
  9. [9] C. Favre & M. Jonsson – « Dynamical compactifications of 𝐂 2 », Ann. of Math.173 (2011), p. 211–248. Zbl1244.32012MR2753603
  10. [10] C. Favre & E. Wulcan – « Degree growth of monomial maps and mcmullen’s polytope algebra », preprint arXiv:1011.2854, to appear in Indiana Univ. Math. J. Zbl1291.37058MR3043585
  11. [11] W. Fulton – Introduction to toric varieties, Annals of Math. Studies, vol. 131, 1993. Zbl0813.14039MR1234037
  12. [12] —, Intersection theory, Springer, 1998. 
  13. [13] W. Fulton & B. Sturmfels – « Intersection theory on toric varieties », Topology36 (1997), p. 335–353. Zbl0885.14025MR1415592
  14. [14] G. Gonzalez-Sprinberg & I. Pan – « On characteristic classes of determinantal Cremona transformations », Math. Ann.335 (2006), p. 479–487. Zbl1097.14011MR2221122
  15. [15] V. Guedj – « Propriétés ergodiques des applications rationnelles », Panoramas & Synthèses 30 (2010), p. 97–202. Zbl06114593MR2932434
  16. [16] B. Hasselblatt & J. Propp – « Degree-growth of monomial maps », Ergodic Theory Dynam. Systems27 (2007), p. 1375–1397. Zbl1143.37032MR2358970
  17. [17] M. Jonsson & E. Wulcan – « Stabilization of monomial maps », Michigan Math. J.60 (2011), p. 629–660. Zbl1247.37040MR2861092
  18. [18] J.-L. Lin – « Algebraic stability and degree growth of monomial maps », Math. Z.271 (2012), p. 293–311. Zbl1247.32018MR2917145
  19. [19] V.-A. Nguyên – « Algebraic degrees for iterates of meromorphic self-maps of k », Publ. Mat.50 (2006), p. 457–473. Zbl1112.37035MR2273670
  20. [20] K. Oguiso – « A remark on dynamical degrees of automorphisms of hyperkähler manifolds », Manuscripta Math.130 (2009), p. 101–111. Zbl1172.14026MR2533769
  21. [21] A. Russakovskii & B. Shiffman – « Value distribution for sequences of rational mappings and complex dynamics », Indiana Univ. Math. J.46 (1997), p. 897–932. Zbl0901.58023MR1488341

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.