Analytical results on a model for damaging in domains and interfaces
ESAIM: Control, Optimisation and Calculus of Variations (2011)
- Volume: 17, Issue: 4, page 955-974
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden (1976). Zbl0328.47035MR390843
- [2] E. Bonetti and G. Bonfanti, Well-posedness results for a model of damage in thermoviscoelastic materials. Ann. Inst. H. Poincaré Anal. Non Linéaire6 (2008) 1187–1208. Zbl1152.35505MR2466326
- [3] E. Bonetti and M. Frémond, Collisions and fracture, a 1-D example: How to tear off a chandelier from the ceiling. J. Elast.74 (2004) 47–66. Zbl1058.74071MR2058195
- [4] E. Bonetti and G. Schimperna, Local existence for Frémond's model of damage in elastic materials. Contin. Mech. Thermodyn.16 (2004) 319–335. Zbl1066.74048MR2061321
- [5] E. Bonetti, A. Segatti and G. Schimperna, On a doubly nonlinear model for the evolution of damaging in viscoelastic materials. J. Diff. Equ.218 (2005) 91–116. Zbl1078.74048MR2174968
- [6] E. Bonetti, G. Bonfanti and R. Rossi, Well-posedness and long-time behaviour for a model of contact with adhesion. Indiana Univ. Math. J.56 (2007) 2787–2819. Zbl1145.35027MR2375702
- [7] E. Bonetti, G. Bonfanti and R. Rossi, Global existence for a contact problem with adhesion. Math. Meth. Appl. Sci.31 (2008) 1029–1064. Zbl1145.35301MR2419088
- [8] E. Bonetti, G. Bonfanti and R. Rossi, Thermal effects in adhesive contact: modelling and analysis. Nonlinearity22 (2009) 2697–2731. Zbl1185.35122MR2550692
- [9] P. Colli, F. Luterotti, G. Schimperna and U. Stefanelli, Global existence for a class of generalized systems for irreversible phase changes. NoDEA Nonlinear Diff. Equ. Appl.9 (2002) 255–276. Zbl1004.35061MR1917373
- [10] F. Freddi and M. Frémond, Damage in domains and interfaces: a coupled predictive theory. J. Mech. Mater. Struct.7 (2006) 1205–1233.
- [11] M. Frémond, Équilibre des structures qui adhèrent à leur support. C. R. Acad. Sci. Paris295 (1982) 913–916. Zbl0551.73096MR695554
- [12] M. Frémond, Adhérence des solides. J. Méc. Théor. Appl.6 (1987) 383–407. Zbl0645.73046
- [13] M. Frémond, Non-smooth Thermomechanics. Springer-Verlag, Berlin (2002). Zbl0990.80001MR1885252
- [14] M. Frémond, Collisions. Edizioni del Dipartimento di Ingegneria Civile dell' Università di Roma Tor Vergata, Italy (2007).
- [15] M. Frémond and N. Kenmochi, Damage problems for viscous locking materials. Adv. Math. Sci. Appl.16 (2006) 697–716. Zbl1158.74310MR2356296
- [16] M. Frémond and B. Nedjar, Damage, gradient of damage and priciple of virtual power. Int. J. Solids Struct.33 (1996) 1083–1103. Zbl0910.73051MR1370124
- [17] M. Frémond, K. Kuttler and M. Shillor, Existence and uniqueness of solutions for a dynamic one-dimensional damage model. J. Math. Anal. Appl.229 (1999) 271–294. Zbl0920.73328MR1664356
- [18] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod Gauthier-Villars, Paris (1969). Zbl0189.40603MR259693
- [19] J.J. Moreau, Sur les lois de frottement, de viscosité et plasticité. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre271 (1970) 608–611.
- [20] N. Point, Unilateral contact with adherence. Math. Meth. Appl. Sci.10 (1998) 367–381. Zbl0656.73052MR958479
- [21] J. Simon, Compact sets in the space Lp(0,T; B). Ann. Mat. Pura Appl.146 (1987) 65–96. Zbl0629.46031MR916688