Well-posedness results for a model of damage in thermoviscoelastic materials

Elena Bonetti; Giovanna Bonfanti

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 6, page 1187-1208
  • ISSN: 0294-1449

How to cite

top

Bonetti, Elena, and Bonfanti, Giovanna. "Well-posedness results for a model of damage in thermoviscoelastic materials." Annales de l'I.H.P. Analyse non linéaire 25.6 (2008): 1187-1208. <http://eudml.org/doc/78828>.

@article{Bonetti2008,
author = {Bonetti, Elena, Bonfanti, Giovanna},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {damage; thermoviscoelasticity; well-posedness results; non-linear evolution inclusions},
language = {eng},
number = {6},
pages = {1187-1208},
publisher = {Elsevier},
title = {Well-posedness results for a model of damage in thermoviscoelastic materials},
url = {http://eudml.org/doc/78828},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Bonetti, Elena
AU - Bonfanti, Giovanna
TI - Well-posedness results for a model of damage in thermoviscoelastic materials
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 6
SP - 1187
EP - 1208
LA - eng
KW - damage; thermoviscoelasticity; well-posedness results; non-linear evolution inclusions
UR - http://eudml.org/doc/78828
ER -

References

top
  1. [1] Baiocchi C., Sulle equazioni differenziali astratte lineari del primo e del secondo ordine negli spazi di Hilbert, Ann. Mat. Pura Appl. (IV)76 (1967) 233-304. Zbl0153.17202MR223697
  2. [2] Barbu V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976. Zbl0328.47035MR390843
  3. [3] Bonetti E., Bonfanti G., Existence and uniqueness of the solution to a 3D thermoviscoelastic system, Electron. J. Differential Equations50 (2003) 1-15. Zbl1034.74022MR1971116
  4. [4] Bonetti E., Schimperna G., Local existence to Frémond's model for damaging in elastic materials, Contin. Mech. Thermodyn.16 (2004) 319-335. Zbl1066.74048MR2061321
  5. [5] Bonetti E., Schimperna G., Segatti A., On a doubly nonlinear model for the evolution of damaging in viscoelastic materials, J. Differential Equations218 (2005) 91-116. Zbl1078.74048MR2174968
  6. [6] Bonfanti G., Frémond M., Luterotti F., Global solution to a nonlinear system for irreversible phase changes, Adv. Math. Sci. Appl.10 (2000) 1-24. Zbl0956.35122MR1769184
  7. [7] Bonfanti G., Frémond M., Luterotti F., Existence and uniqueness results to a phase transition model based on microscopic accelerations and movements, Nonlinear Anal. Real World Appl.5 (2004) 123-140. Zbl1092.80006MR2004090
  8. [8] Brézis H., Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Math. Studies, vol. 5, North-Holland, Amsterdam, 1973. Zbl0252.47055MR348562
  9. [9] Dafermos C.M., Global smooth solutions to the initial boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity, SIAM J. Math. Anal.13 (1982) 397-408. Zbl0489.73124MR653464
  10. [10] Francfort G.A., Suquet P., Homogenization and mechanical dissipation in thermoviscoelasticity, Arch. Ration. Mech. Anal.96 (1986) 265-293. Zbl0621.73044MR855306
  11. [11] Frémond M., Non-smooth Thermomechanics, Springer-Verlag, Berlin, 2001. Zbl0990.80001MR1885252
  12. [12] Frémond M., Kenmochi N., Damage problems for viscous locking materials, Adv. Math. Sci. Appl.16 (2006) 697-716. Zbl1158.74310MR2356296
  13. [13] Frémond M., Kuttler K.L., Nedjar B., Shillor M., One dimensional models of damage, Adv. Math. Sci. Appl.8 (1998) 541-570. Zbl0915.73041MR1657215
  14. [14] Lions J.L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
  15. [15] Luterotti F., Schimperna G., Stefanelli U., Global solution to a phase field model with irreversible and constrained phase evolution, Quart. Appl. Math.60 (2002) 301-316. Zbl1032.35109MR1900495
  16. [16] Nirenberg L., On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3)13 (1959) 115-162. Zbl0088.07601MR109940
  17. [17] Sassetti M., Tarsia A., Su un'equazione non lineare della corda vibrante, Ann. Mat. Pura Appl.161 (1992) 1-42. Zbl0780.35016MR1174809
  18. [18] Schimperna G., Stefanelli U., Positivity of the temperature for phase transitions with micro-movements, Nonlinear Anal. Real World Appl.8 (2007) 257-266. Zbl1116.80015MR2268083
  19. [19] Simon J., Compact sets in the space L p ( 0 , T ; B ) , Ann. Mat. Pura Appl. (4)146 (1987) 65-96. Zbl0629.46031MR916688

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.