Global minimizers for axisymmetric multiphase membranes

Rustum Choksi; Marco Morandotti; Marco Veneroni

ESAIM: Control, Optimisation and Calculus of Variations (2013)

  • Volume: 19, Issue: 4, page 1014-1029
  • ISSN: 1292-8119

Abstract

top
We consider a Canham − Helfrich − type variational problem defined over closed surfaces enclosing a fixed volume and having fixed surface area. The problem models the shape of multiphase biomembranes. It consists of minimizing the sum of the Canham − Helfrich energy, in which the bending rigidities and spontaneous curvatures are now phase-dependent, and a line tension penalization for the phase interfaces. By restricting attention to axisymmetric surfaces and phase distributions, we extend our previous results for a single phase [R. Choksi and M. Veneroni, Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9] and prove existence of a global minimizer.

How to cite

top

Choksi, Rustum, Morandotti, Marco, and Veneroni, Marco. "Global minimizers for axisymmetric multiphase membranes." ESAIM: Control, Optimisation and Calculus of Variations 19.4 (2013): 1014-1029. <http://eudml.org/doc/272804>.

@article{Choksi2013,
abstract = {We consider a Canham − Helfrich − type variational problem defined over closed surfaces enclosing a fixed volume and having fixed surface area. The problem models the shape of multiphase biomembranes. It consists of minimizing the sum of the Canham − Helfrich energy, in which the bending rigidities and spontaneous curvatures are now phase-dependent, and a line tension penalization for the phase interfaces. By restricting attention to axisymmetric surfaces and phase distributions, we extend our previous results for a single phase [R. Choksi and M. Veneroni, Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9] and prove existence of a global minimizer.},
author = {Choksi, Rustum, Morandotti, Marco, Veneroni, Marco},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {helfrich functional; biomembranes; global minimizers; axisymmetric surfaces; multicomponent vesicle; Helfrich functional},
language = {eng},
number = {4},
pages = {1014-1029},
publisher = {EDP-Sciences},
title = {Global minimizers for axisymmetric multiphase membranes},
url = {http://eudml.org/doc/272804},
volume = {19},
year = {2013},
}

TY - JOUR
AU - Choksi, Rustum
AU - Morandotti, Marco
AU - Veneroni, Marco
TI - Global minimizers for axisymmetric multiphase membranes
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2013
PB - EDP-Sciences
VL - 19
IS - 4
SP - 1014
EP - 1029
AB - We consider a Canham − Helfrich − type variational problem defined over closed surfaces enclosing a fixed volume and having fixed surface area. The problem models the shape of multiphase biomembranes. It consists of minimizing the sum of the Canham − Helfrich energy, in which the bending rigidities and spontaneous curvatures are now phase-dependent, and a line tension penalization for the phase interfaces. By restricting attention to axisymmetric surfaces and phase distributions, we extend our previous results for a single phase [R. Choksi and M. Veneroni, Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9] and prove existence of a global minimizer.
LA - eng
KW - helfrich functional; biomembranes; global minimizers; axisymmetric surfaces; multicomponent vesicle; Helfrich functional
UR - http://eudml.org/doc/272804
ER -

References

top
  1. [1] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications (2000). Zbl0957.49001MR1857292
  2. [2] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics, ETH Zürich. Birkhäuser Verlag, Basel (2005). Zbl1090.35002MR2129498
  3. [3] T. Baumgart, S. Das, W.W. Webb and J.T. Jenkins, Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J.89 (2005) 1067–1080. 
  4. [4] T. Baumgart, S.T. Hess and W.W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature425 (2003) 821–824. 
  5. [5] G. Bellettini and L. Mugnai, A varifolds representation of the relaxed elastica functional. J. Convex Anal.14 (2007) 543–564. Zbl1127.49032MR2341303
  6. [6] P.B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol.26 (1970) 61–80. 
  7. [7] R. Choksi and M. Veneroni, Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case. Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9. Zbl1278.49049MR3116014
  8. [8] L. Deseri, M.D. Piccioni and G. Zurlo, Derivation of a new free energy for biological membranes. Contin. Mech. Thermodyn.20 (2008) 255–273. Zbl1160.74387MR2461716
  9. [9] M.P. do Carmo, Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, N.J. (1976). Translated from the Portuguese. MR394451
  10. [10] C.M. Elliott and B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys.229 (2010) 6585–6612. Zbl05784817MR2660322
  11. [11] C.M. Elliott and B. Stinner, A surface phase field model for two-phase biological membranes. SIAM J. Appl. Math.70 (2010) 2904–2928. Zbl1209.92003MR2735109
  12. [12] E.L. Elson, E. Fried, J.E. Dolbow and G.M. Genin, Phase separation in biological membranes: integration of theory and experiment. Annu. Rev. Biophys.39 (2010) 207–226. 
  13. [13] E. Evans, Bending resistance and chemically induced moments in membrane bilayers. Biophys. J.14 (1974) 923–931. 
  14. [14] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press (1992). Zbl0804.28001MR1158660
  15. [15] W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. Teil C28 (1973) 693–703. 
  16. [16] M. Helmers, Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes. Technical report, Institute for Applied Mathematics, University of Bonn (2011). 
  17. [17] M. Helmers, Kinks in two-phase lipid bilayer membranes. Calc. Var. Partial Differ. Equ. (2012). DOI: 10.1007/s00526-012-0550-z. MR3090540
  18. [18] J.E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J.35 (1986) 45–71. Zbl0561.53008MR825628
  19. [19] F. Jülicher and R. Lipowsky, Domain-induced budding of vesicles. Phys. Rev. Lett.70 (1993) 2964–2967. 
  20. [20] F. Jülicher and R. Lipowsky, Shape transformations of vesicles with intramembrane domains. Phys. Rev. E53 (1996) 2670–2683. 
  21. [21] J.S. Lowengrub, A. Rätz and A. Voigt, Phase-field modeling of the dynamics of multicomponent vesicles: spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79 (2009) 0311926. MR2497179
  22. [22] R. Moser, A generalization of Rellich’s theorem and regularity of varifolds minimizing curvature. Technical Report 72, Max-Planck-Institut for Mathematics in the Sciences (2001). 
  23. [23] U. Seifert, Configurations of fluid membranes and vesicles. Adv. Phys.46 (1997) 13–137. 
  24. [24] J.S. Sohn, Y.-H. Tseng, S. Li, A. Voigt and J.S. Lowengrub, Dynamics of multicomponent vesicles in a viscous fluid. J. Comput. Phys.229 (2010) 119–144. Zbl05650853MR2558907
  25. [25] R.H. Templer, B.J. Khoo and J.M. Seddon, Gaussian curvature modulus of an amphiphilic monolayer. Langmuir14 (1998) 7427–7434. 
  26. [26] X. Wang and Q. Du, Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol.56 (2008) 347–371. Zbl1143.92001MR2358438
  27. [27] T.J. Willmore, Riemannian geometry. Clarendon Press, Oxford (1993). Zbl0797.53002MR1261641
  28. [28] G. Zurlo, Material and Geometric Phase Transitions in Biological Membranes. Ph.D. thesis, University of Pisa (2006). 

NotesEmbed ?

top

You must be logged in to post comments.