Global minimizers for axisymmetric multiphase membranes
Rustum Choksi; Marco Morandotti; Marco Veneroni
ESAIM: Control, Optimisation and Calculus of Variations (2013)
- Volume: 19, Issue: 4, page 1014-1029
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topChoksi, Rustum, Morandotti, Marco, and Veneroni, Marco. "Global minimizers for axisymmetric multiphase membranes." ESAIM: Control, Optimisation and Calculus of Variations 19.4 (2013): 1014-1029. <http://eudml.org/doc/272804>.
@article{Choksi2013,
abstract = {We consider a Canham − Helfrich − type variational problem defined over closed surfaces enclosing a fixed volume and having fixed surface area. The problem models the shape of multiphase biomembranes. It consists of minimizing the sum of the Canham − Helfrich energy, in which the bending rigidities and spontaneous curvatures are now phase-dependent, and a line tension penalization for the phase interfaces. By restricting attention to axisymmetric surfaces and phase distributions, we extend our previous results for a single phase [R. Choksi and M. Veneroni, Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9] and prove existence of a global minimizer.},
author = {Choksi, Rustum, Morandotti, Marco, Veneroni, Marco},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {helfrich functional; biomembranes; global minimizers; axisymmetric surfaces; multicomponent vesicle; Helfrich functional},
language = {eng},
number = {4},
pages = {1014-1029},
publisher = {EDP-Sciences},
title = {Global minimizers for axisymmetric multiphase membranes},
url = {http://eudml.org/doc/272804},
volume = {19},
year = {2013},
}
TY - JOUR
AU - Choksi, Rustum
AU - Morandotti, Marco
AU - Veneroni, Marco
TI - Global minimizers for axisymmetric multiphase membranes
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2013
PB - EDP-Sciences
VL - 19
IS - 4
SP - 1014
EP - 1029
AB - We consider a Canham − Helfrich − type variational problem defined over closed surfaces enclosing a fixed volume and having fixed surface area. The problem models the shape of multiphase biomembranes. It consists of minimizing the sum of the Canham − Helfrich energy, in which the bending rigidities and spontaneous curvatures are now phase-dependent, and a line tension penalization for the phase interfaces. By restricting attention to axisymmetric surfaces and phase distributions, we extend our previous results for a single phase [R. Choksi and M. Veneroni, Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9] and prove existence of a global minimizer.
LA - eng
KW - helfrich functional; biomembranes; global minimizers; axisymmetric surfaces; multicomponent vesicle; Helfrich functional
UR - http://eudml.org/doc/272804
ER -
References
top- [1] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications (2000). Zbl0957.49001MR1857292
- [2] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics, ETH Zürich. Birkhäuser Verlag, Basel (2005). Zbl1090.35002MR2129498
- [3] T. Baumgart, S. Das, W.W. Webb and J.T. Jenkins, Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J.89 (2005) 1067–1080.
- [4] T. Baumgart, S.T. Hess and W.W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature425 (2003) 821–824.
- [5] G. Bellettini and L. Mugnai, A varifolds representation of the relaxed elastica functional. J. Convex Anal.14 (2007) 543–564. Zbl1127.49032MR2341303
- [6] P.B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol.26 (1970) 61–80.
- [7] R. Choksi and M. Veneroni, Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case. Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9. Zbl1278.49049MR3116014
- [8] L. Deseri, M.D. Piccioni and G. Zurlo, Derivation of a new free energy for biological membranes. Contin. Mech. Thermodyn.20 (2008) 255–273. Zbl1160.74387MR2461716
- [9] M.P. do Carmo, Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, N.J. (1976). Translated from the Portuguese. MR394451
- [10] C.M. Elliott and B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys.229 (2010) 6585–6612. Zbl05784817MR2660322
- [11] C.M. Elliott and B. Stinner, A surface phase field model for two-phase biological membranes. SIAM J. Appl. Math.70 (2010) 2904–2928. Zbl1209.92003MR2735109
- [12] E.L. Elson, E. Fried, J.E. Dolbow and G.M. Genin, Phase separation in biological membranes: integration of theory and experiment. Annu. Rev. Biophys.39 (2010) 207–226.
- [13] E. Evans, Bending resistance and chemically induced moments in membrane bilayers. Biophys. J.14 (1974) 923–931.
- [14] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press (1992). Zbl0804.28001MR1158660
- [15] W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. Teil C28 (1973) 693–703.
- [16] M. Helmers, Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes. Technical report, Institute for Applied Mathematics, University of Bonn (2011).
- [17] M. Helmers, Kinks in two-phase lipid bilayer membranes. Calc. Var. Partial Differ. Equ. (2012). DOI: 10.1007/s00526-012-0550-z. MR3090540
- [18] J.E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J.35 (1986) 45–71. Zbl0561.53008MR825628
- [19] F. Jülicher and R. Lipowsky, Domain-induced budding of vesicles. Phys. Rev. Lett.70 (1993) 2964–2967.
- [20] F. Jülicher and R. Lipowsky, Shape transformations of vesicles with intramembrane domains. Phys. Rev. E53 (1996) 2670–2683.
- [21] J.S. Lowengrub, A. Rätz and A. Voigt, Phase-field modeling of the dynamics of multicomponent vesicles: spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79 (2009) 0311926. MR2497179
- [22] R. Moser, A generalization of Rellich’s theorem and regularity of varifolds minimizing curvature. Technical Report 72, Max-Planck-Institut for Mathematics in the Sciences (2001).
- [23] U. Seifert, Configurations of fluid membranes and vesicles. Adv. Phys.46 (1997) 13–137.
- [24] J.S. Sohn, Y.-H. Tseng, S. Li, A. Voigt and J.S. Lowengrub, Dynamics of multicomponent vesicles in a viscous fluid. J. Comput. Phys.229 (2010) 119–144. Zbl05650853MR2558907
- [25] R.H. Templer, B.J. Khoo and J.M. Seddon, Gaussian curvature modulus of an amphiphilic monolayer. Langmuir14 (1998) 7427–7434.
- [26] X. Wang and Q. Du, Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol.56 (2008) 347–371. Zbl1143.92001MR2358438
- [27] T.J. Willmore, Riemannian geometry. Clarendon Press, Oxford (1993). Zbl0797.53002MR1261641
- [28] G. Zurlo, Material and Geometric Phase Transitions in Biological Membranes. Ph.D. thesis, University of Pisa (2006).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.