Global minimizers for axisymmetric multiphase membranes

Rustum Choksi; Marco Morandotti; Marco Veneroni

ESAIM: Control, Optimisation and Calculus of Variations (2013)

  • Volume: 19, Issue: 4, page 1014-1029
  • ISSN: 1292-8119

Abstract

top
We consider a Canham − Helfrich − type variational problem defined over closed surfaces enclosing a fixed volume and having fixed surface area. The problem models the shape of multiphase biomembranes. It consists of minimizing the sum of the Canham − Helfrich energy, in which the bending rigidities and spontaneous curvatures are now phase-dependent, and a line tension penalization for the phase interfaces. By restricting attention to axisymmetric surfaces and phase distributions, we extend our previous results for a single phase [R. Choksi and M. Veneroni, Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9] and prove existence of a global minimizer.

How to cite

top

Choksi, Rustum, Morandotti, Marco, and Veneroni, Marco. "Global minimizers for axisymmetric multiphase membranes." ESAIM: Control, Optimisation and Calculus of Variations 19.4 (2013): 1014-1029. <http://eudml.org/doc/272804>.

@article{Choksi2013,
abstract = {We consider a Canham − Helfrich − type variational problem defined over closed surfaces enclosing a fixed volume and having fixed surface area. The problem models the shape of multiphase biomembranes. It consists of minimizing the sum of the Canham − Helfrich energy, in which the bending rigidities and spontaneous curvatures are now phase-dependent, and a line tension penalization for the phase interfaces. By restricting attention to axisymmetric surfaces and phase distributions, we extend our previous results for a single phase [R. Choksi and M. Veneroni, Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9] and prove existence of a global minimizer.},
author = {Choksi, Rustum, Morandotti, Marco, Veneroni, Marco},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {helfrich functional; biomembranes; global minimizers; axisymmetric surfaces; multicomponent vesicle; Helfrich functional},
language = {eng},
number = {4},
pages = {1014-1029},
publisher = {EDP-Sciences},
title = {Global minimizers for axisymmetric multiphase membranes},
url = {http://eudml.org/doc/272804},
volume = {19},
year = {2013},
}

TY - JOUR
AU - Choksi, Rustum
AU - Morandotti, Marco
AU - Veneroni, Marco
TI - Global minimizers for axisymmetric multiphase membranes
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2013
PB - EDP-Sciences
VL - 19
IS - 4
SP - 1014
EP - 1029
AB - We consider a Canham − Helfrich − type variational problem defined over closed surfaces enclosing a fixed volume and having fixed surface area. The problem models the shape of multiphase biomembranes. It consists of minimizing the sum of the Canham − Helfrich energy, in which the bending rigidities and spontaneous curvatures are now phase-dependent, and a line tension penalization for the phase interfaces. By restricting attention to axisymmetric surfaces and phase distributions, we extend our previous results for a single phase [R. Choksi and M. Veneroni, Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9] and prove existence of a global minimizer.
LA - eng
KW - helfrich functional; biomembranes; global minimizers; axisymmetric surfaces; multicomponent vesicle; Helfrich functional
UR - http://eudml.org/doc/272804
ER -

References

top
  1. [1] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications (2000). Zbl0957.49001MR1857292
  2. [2] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics, ETH Zürich. Birkhäuser Verlag, Basel (2005). Zbl1090.35002MR2129498
  3. [3] T. Baumgart, S. Das, W.W. Webb and J.T. Jenkins, Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J.89 (2005) 1067–1080. 
  4. [4] T. Baumgart, S.T. Hess and W.W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature425 (2003) 821–824. 
  5. [5] G. Bellettini and L. Mugnai, A varifolds representation of the relaxed elastica functional. J. Convex Anal.14 (2007) 543–564. Zbl1127.49032MR2341303
  6. [6] P.B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol.26 (1970) 61–80. 
  7. [7] R. Choksi and M. Veneroni, Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case. Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9. Zbl1278.49049MR3116014
  8. [8] L. Deseri, M.D. Piccioni and G. Zurlo, Derivation of a new free energy for biological membranes. Contin. Mech. Thermodyn.20 (2008) 255–273. Zbl1160.74387MR2461716
  9. [9] M.P. do Carmo, Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, N.J. (1976). Translated from the Portuguese. MR394451
  10. [10] C.M. Elliott and B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys.229 (2010) 6585–6612. Zbl05784817MR2660322
  11. [11] C.M. Elliott and B. Stinner, A surface phase field model for two-phase biological membranes. SIAM J. Appl. Math.70 (2010) 2904–2928. Zbl1209.92003MR2735109
  12. [12] E.L. Elson, E. Fried, J.E. Dolbow and G.M. Genin, Phase separation in biological membranes: integration of theory and experiment. Annu. Rev. Biophys.39 (2010) 207–226. 
  13. [13] E. Evans, Bending resistance and chemically induced moments in membrane bilayers. Biophys. J.14 (1974) 923–931. 
  14. [14] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press (1992). Zbl0804.28001MR1158660
  15. [15] W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. Teil C28 (1973) 693–703. 
  16. [16] M. Helmers, Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes. Technical report, Institute for Applied Mathematics, University of Bonn (2011). 
  17. [17] M. Helmers, Kinks in two-phase lipid bilayer membranes. Calc. Var. Partial Differ. Equ. (2012). DOI: 10.1007/s00526-012-0550-z. MR3090540
  18. [18] J.E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J.35 (1986) 45–71. Zbl0561.53008MR825628
  19. [19] F. Jülicher and R. Lipowsky, Domain-induced budding of vesicles. Phys. Rev. Lett.70 (1993) 2964–2967. 
  20. [20] F. Jülicher and R. Lipowsky, Shape transformations of vesicles with intramembrane domains. Phys. Rev. E53 (1996) 2670–2683. 
  21. [21] J.S. Lowengrub, A. Rätz and A. Voigt, Phase-field modeling of the dynamics of multicomponent vesicles: spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79 (2009) 0311926. MR2497179
  22. [22] R. Moser, A generalization of Rellich’s theorem and regularity of varifolds minimizing curvature. Technical Report 72, Max-Planck-Institut for Mathematics in the Sciences (2001). 
  23. [23] U. Seifert, Configurations of fluid membranes and vesicles. Adv. Phys.46 (1997) 13–137. 
  24. [24] J.S. Sohn, Y.-H. Tseng, S. Li, A. Voigt and J.S. Lowengrub, Dynamics of multicomponent vesicles in a viscous fluid. J. Comput. Phys.229 (2010) 119–144. Zbl05650853MR2558907
  25. [25] R.H. Templer, B.J. Khoo and J.M. Seddon, Gaussian curvature modulus of an amphiphilic monolayer. Langmuir14 (1998) 7427–7434. 
  26. [26] X. Wang and Q. Du, Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol.56 (2008) 347–371. Zbl1143.92001MR2358438
  27. [27] T.J. Willmore, Riemannian geometry. Clarendon Press, Oxford (1993). Zbl0797.53002MR1261641
  28. [28] G. Zurlo, Material and Geometric Phase Transitions in Biological Membranes. Ph.D. thesis, University of Pisa (2006). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.