Two-input control systems on the euclidean group SE (2)
Ross M. Adams; Rory Biggs; Claudiu C. Remsing
ESAIM: Control, Optimisation and Calculus of Variations (2013)
- Volume: 19, Issue: 4, page 947-975
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. Abraham and J.E. Marsden, Foundations of Mechanics, 2nd edition. Addison-Wesley (1978). Zbl0393.70001MR515141
- [2] R.M. Adams, R. Biggs and C.C. Remsing, Single-input control systems on the Euclidean group SE (2). Eur. J. Pure Appl. Math.5 (2012) 1–15. Zbl1318.93028MR2881500
- [3] A.A. Agrachev and Y.L. Sachkov, Control Theory from the Geometric Viewpoint. Springer-Verlag (2004). Zbl1062.93001MR2062547
- [4] J.V. Armitage and W.F. Eberlein, Elliptic Functions. Cambridge University Press (2006). Zbl1105.14001MR2266844
- [5] R. Biggs and C.C. Remsing, A category of control systems. An. Şt. Univ. Ovidius Constanţa 20 (2012) 355–368. Zbl1274.93062MR2928428
- [6] R. Biggs and C.C. Remsing, On the equivalence of control systems on Lie groups. Publ. Math. Debrecen (submitted). Zbl06583091
- [7] R. Biggs and C.C. Remsing, On the equivalence of cost-extended control systems on Lie groups. Proc. 8th WSEAS Int. Conf. Dyn. Syst. Control. Porto, Portugal (2012) 60–65.
- [8] R.W. Brockett, System theory on group manifolds and coset spaces. SIAM J. Control10 (1972) 265–284. Zbl0238.93001MR315559
- [9] D.D. Holm, J.E. Marsden, T. Ratiu and A. Weinstein, Nonlinear stability of fluid and plasma equilibria. Phys. Rep.123 (1985) 1–116. Zbl0717.76051MR794110
- [10] V. Jurdjevic, Non-Euclidean elastica. Amer. J. Math.117 (1995) 93–124. Zbl0822.58010MR1314459
- [11] V. Jurdjevic, Geometric Control Theory. Cambridge University Press (1997). Zbl1138.93005MR1425878
- [12] V. Jurdjevic, Optimal control problems on Lie groups: crossroads between geometry and mechanics, in Geometry of Feedback and Optimal Control, edited by B. Jakubczyk and W. Respondek, M. Dekker (1998) 257–303. Zbl0925.93138MR1493016
- [13] V. Jurdjevic and H.J. Sussmann, Control systems on Lie groups. J. Differ. Equ.12 (1972) 313–329. Zbl0237.93027MR331185
- [14] P.S. Krishnaprasad, Optimal control and Poisson reduction, Technical Research Report T.R.93–87. Inst. Systems Research, University of Maryland (1993).
- [15] D.F. Lawden, Elliptic Functions and Applications. Springer-Verlag (1989). Zbl0689.33001MR1007595
- [16] J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry. 2nd edition. Springer-Verlag (1999). Zbl0811.70002MR1723696
- [17] I. Moiseev and Y.L. Sachkov, Maxwell strata in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 16 (2010) 380–399. Zbl1217.49037MR2654199
- [18] J-P. Ortega and T.S. Ratiu, Non-linear stability of singular relative periodic orbits in Hamiltonian systems with symmetry. J. Geom. Phys.32 (1999) 160–188. Zbl0955.37032MR1724176
- [19] J-P. Ortega, V. Planas-Bielsa and T.S. Ratiu, Asymptotic and Lyapunov stability of constrained and Poisson equilibria. J. Differ. Equ.214 (2005) 92–127. Zbl1066.37017MR2143513
- [20] L. Perko, Differential Equations and Dynamical Systems, 3rd edition. Springer-Verlag (2001). Zbl0717.34001MR1801796
- [21] M. Puta, Hamiltonian Mechanical Systems and Geometric Quantization. Kluwer (1993). Zbl0795.70001MR1247960
- [22] M. Puta, S. Chirici and A. Voitecovici, An optimal control problem on the Lie group SE (2,R). Publ. Math. Debrecen60 (2002) 15–22. Zbl1017.70019MR1882450
- [23] M. Puta, G. Schwab and A. Voitecovici, Some remarks on an optimal control problem on the Lie group SE (2,R). An. Şt. Univ. A.I. Cuza Iaşi, ser. Mat. 49 (2003) 249–256. Zbl1063.49005MR2067208
- [24] C.C. Remsing, Optimal control and Hamilton − Poisson formalism. Int. J. Pure Appl. Math. 59 (2010) 11–17. Zbl1206.49006MR2642777
- [25] C.C. Remsing, Control and stability on the Euclidean group SE (2). Lect. Notes Eng. Comput. Sci. Proc. WCE 2011. London, UK, 225–230.
- [26] Y.L. Sachkov, Maxwell strata in the Euler elastic problem. J. Dyn. Control Syst.14 (2008) 169–234. Zbl1203.49004MR2390213
- [27] Y.L. Sachkov, Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 16 (2010) 1018–1039. Zbl1208.49003MR2744160
- [28] Y.L. Sachkov, Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 17 (2011) 293–321. Zbl1251.49057MR2801321