Maxwell strata in sub-Riemannian problem on the group of motions of a plane

Igor Moiseev; Yuri L. Sachkov

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 16, Issue: 2, page 380-399
  • ISSN: 1292-8119

Abstract

top
The left-invariant sub-Riemannian problem on the group of motions of a plane is considered. Sub-Riemannian geodesics are parameterized by Jacobi's functions. Discrete symmetries of the problem generated by reflections of pendulum are described. The corresponding Maxwell points are characterized, on this basis an upper bound on the cut time is obtained.

How to cite

top

Moiseev, Igor, and Sachkov, Yuri L.. "Maxwell strata in sub-Riemannian problem on the group of motions of a plane." ESAIM: Control, Optimisation and Calculus of Variations 16.2 (2010): 380-399. <http://eudml.org/doc/250752>.

@article{Moiseev2010,
abstract = { The left-invariant sub-Riemannian problem on the group of motions of a plane is considered. Sub-Riemannian geodesics are parameterized by Jacobi's functions. Discrete symmetries of the problem generated by reflections of pendulum are described. The corresponding Maxwell points are characterized, on this basis an upper bound on the cut time is obtained. },
author = {Moiseev, Igor, Sachkov, Yuri L.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Optimal control; sub-Riemannian geometry; differential-geometric methods; left-invariant problem; Lie group; Pontryagin Maximum Principle; symmetries; exponential mapping; Maxwell stratum; optimal control; Pontryagin's maximum principle},
language = {eng},
month = {4},
number = {2},
pages = {380-399},
publisher = {EDP Sciences},
title = {Maxwell strata in sub-Riemannian problem on the group of motions of a plane},
url = {http://eudml.org/doc/250752},
volume = {16},
year = {2010},
}

TY - JOUR
AU - Moiseev, Igor
AU - Sachkov, Yuri L.
TI - Maxwell strata in sub-Riemannian problem on the group of motions of a plane
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/4//
PB - EDP Sciences
VL - 16
IS - 2
SP - 380
EP - 399
AB - The left-invariant sub-Riemannian problem on the group of motions of a plane is considered. Sub-Riemannian geodesics are parameterized by Jacobi's functions. Discrete symmetries of the problem generated by reflections of pendulum are described. The corresponding Maxwell points are characterized, on this basis an upper bound on the cut time is obtained.
LA - eng
KW - Optimal control; sub-Riemannian geometry; differential-geometric methods; left-invariant problem; Lie group; Pontryagin Maximum Principle; symmetries; exponential mapping; Maxwell stratum; optimal control; Pontryagin's maximum principle
UR - http://eudml.org/doc/250752
ER -

References

top
  1. A.A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dyn. Control Systems2 (1996) 321–358.  Zbl0941.53022
  2. A.A. Agrachev and Yu.L. Sachkov, Control Theory from the Geometric Viewpoint. Springer-Verlag, Berlin (2004).  Zbl1062.93001
  3. A.M. Bloch, J. Baillieul, P.E. Crouch and J. Marsden, Nonholonomic Mechanics and Control. Springer (2003).  
  4. U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2) and Lens Spaces. SIAM J. Control Optim.47 (2008) 1851–1878.  Zbl1170.53016
  5. R. Brockett, Control theory and singular Riemannian geometry, in New Directions in Applied Mathematics, P. Hilton and G. Young Eds., Springer-Verlag, New York (1981) 11–27.  
  6. C. El-Alaoui, J.P. Gauthier and I. Kupka, Small sub-Riemannian balls on 3 . J. Dyn. Control Systems2 (1996) 359–421.  Zbl0941.53024
  7. V. Jurdjevic, Geometric Control Theory. Cambridge University Press (1997).  Zbl0940.93005
  8. J.P. Laumond, Nonholonomic motion planning for mobile robots, Lecture notes in Control and Information Sciences229. Springer (1998).  
  9. F. Monroy-Perez and A. Anzaldo-Meneses, The step-2 nilpotent (n, n(n+1)/2) sub-Riemannian geometry. J. Dyn. Control Systems12 (2006) 185–216.  Zbl1111.49019
  10. R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications. American Mathematical Society (2002).  Zbl1044.53022
  11. O. Myasnichenko, Nilpotent (3, 6) sub-Riemannian problem. J. Dyn. Control Systems8 (2002) 573–597.  Zbl1047.93014
  12. O. Myasnichenko, Nilpotent (n, n(n+1)/2) sub-Riemannian problem. J. Dyn. Control Systems12 (2006) 87–95.  Zbl1117.49036
  13. J. Petitot, The neurogeometry of pinwheels as a sub-Riemannian contact stucture. J. Physiology - Paris97 (2003) 265–309.  
  14. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. Wiley Interscience (1962).  
  15. Yu.L. Sachkov, Exponential map in the generalized Dido's problem. Mat. Sbornik194 (2003) 63–90 (in Russian). English translation in: Sb. Math.194 (2003) 1331–1359.  
  16. Yu.L. Sachkov, Discrete symmetries in the generalized Dido problem. Mat. Sbornik197 (2006) 95–116 (in Russian). English translation in: Sb. Math.197 (2006) 235–257.  
  17. Yu.L. Sachkov, The Maxwell set in the generalized Dido problem. Mat. Sbornik197 (2006) 123–150 (in Russian). English translation in: Sb. Math.197 (2006) 595–621.  
  18. Yu.L. Sachkov, Complete description of the Maxwell strata in the generalized Dido problem. Mat. Sbornik197 (2006) 111–160 (in Russian). English translation in: Sb. Math.197 (2006) 901–950.  
  19. Yu.L. Sachkov, Maxwell strata in Euler's elastic problem. J. Dyn. Control Systems14 (2008) 169–234.  Zbl1203.49004
  20. Yu.L. Sachkov, Conjugate points in Euler's elastic problem. J. Dyn. Control Systems14 (2008) 409–439.  Zbl1203.49005
  21. Yu.L. Sachkov, Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV (Submitted).  Zbl1208.49003
  22. A.M. Vershik and V.Y. Gershkovich, Nonholonomic Dynamical Systems, Geometry of distributions and variational problems (Russian), in Itogi Nauki i Tekhniki: Sovremennye Problemy Matematiki, Fundamental'nyje Napravleniya16, VINITI, Moscow (1987) 5–85. English translation in: Encyclopedia of Mathematical Sciences16, Dynamical Systems7, Springer Verlag.  Zbl0797.58007
  23. E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, An introduction to the general theory of infinite processes and of analytic functions; with an account of principal transcendental functions. Cambridge University Press, Cambridge (1996).  Zbl0951.30002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.