A phase-field model for compliance shape optimization in nonlinear elasticity
Patrick Penzler; Martin Rumpf; Benedikt Wirth
ESAIM: Control, Optimisation and Calculus of Variations (2012)
- Volume: 18, Issue: 1, page 229-258
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- G. Allaire, Shape optimization by the homogenization method, Applied Mathematical Sciences146. Springer-Verlag, New York (2002).
- G. Allaire, Topology Optimization with the Homogenization and the Level-Set Method, in Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials, NATO Science Series II : Mathematics, Physics and Chemistry170, Springer (2004) 1–13.
- G. Allaire, E. Bonnetier, G. Francfort and F. Jouve, Shape optimization by the homogenization method. Numer. Math.76 (1997) 27–68.
- G. Allaire, F. Jouve and A.-M. Toader, A level-set method for shape optimization. C. R. Acad. Sci. Paris, Sér. I334 (2002) 1125–1130.
- G. Allaire, F. Jouve and H. Maillot, Topology optimization for minimum stress design with the homogenization method. Struct. Multidisc. Optim.28 (2004) 87–98.
- G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys.194 (2004) 363–393.
- G. Allaire, F. de Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method. Control Cybern.34 (2005) 59–80.
- S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall.27 (1979) 1085–1095.
- L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var.1 (1993) 55–69.
- R. Ansola, E. Veguería, J. Canales and J.A. Tárrago, A simple evolutionary topology optimization procedure for compliant mechanism design. Finite Elements Anal. Des.44 (2007) 53–62.
- J.M. Ball, Convexity conditions and existence theorems in nonlinear elasiticity. Arch. Ration. Mech. Anal.63 (1977) 337–403.
- J.M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edinb. A88 (1981) 315–328.
- B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization. ESAIM : COCV9 (2003) 19–48.
- A. Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications2. Oxford University Press, Oxford (2002).
- M. Burger and R. Stainko, Phase-field relaxation of topology optimization with local stress constraints. SIAM J. Control Optim.45 (2006) 1447–1466.
- A. Chambolle, A density result in two-dimensional linearized elasticity, and applications. Arch. Ration. Mech. Anal.167 (2003) 211–233.
- Y. Chen, T.A. Davis, W.W. Hager and S. Rajamanickam, Algorithm 887 : CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw.35 (2009) 22 :1–22 :14.
- P.G. Ciarlet, Three-dimensional elasticity. Elsevier Science Publishers B. V. (1988).
- A.R. Conn, N.I.M Gould and P.L. Toint, Trust-Region Methods. SIAM (2000).
- S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Risk averse shape optimization. SIAM J. Control Optim. (to appear).
- B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag, New York (1989).
- T.A. Davis and W.W. Hager, Dynamic supernodes in sparse Cholesky update/downdate and triangular solves. ACM Trans. Math. Softw.35 (2009) 27:1–27 :23.
- G.P. Dias, J. Herskovits and F.A. Rochinha, Simultaneous shape optimization and nonlinear analysis of elastic solids, in Computational Mechanics – New Trends and Applications, E. Onate, I. Idelsohn and E. Dvorkin Eds., CIMNE, Barcelona (1998) 1–13.
- X. Guo, K. Zhao and M.Y. Wang, Simultaneous shape and topology optimization with implicit topology description functions. Control Cybern.34 (2005) 255–282.
- Z. Liu, J.G. Korvink and R. Huang, Structure topology optimization : Fully coupled level set method via femlab. Struct. Multidisc. Optim.29 (2005) 407–417.
- J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983).
- L. Modica and S. Mortola, Un esempio di Γ − -convergenza. Boll. Un. Mat. Ital. B (5)14 (1977) 285–299.
- P. Pedregal, Variational Methods in Nonlinear Elasticity. SIAM (2000).
- J.A. Sethian and A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys.163 (2000) 489–528.
- O. Sigmund and P.M. Clausen, Topology optimization using a mixed formulation : An alternative way to solve pressure load problems. Comput. Methods Appl. Mech. Eng.196 (2007) 1874–1889.
- J. Sikolowski and J.-P. Zolésio, Introduction to shape optimization, in Shape sensitivity analysis, Springer (1992).
- M.Y. Wang and S. Zhou, Synthesis of shape and topology of multi-material structures with a phase-field method. J. Computer-Aided Mater. Des.11 (2004) 117–138.
- M.Y. Wang, X. Wang and D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng.192 (2003) 227–246.
- M.Y. Wang, S. Zhou and H. Ding, Nonlinear diffusions in topology optimization. Struct. Multidisc. Optim.28 (2004) 262–276.
- P. Wei and M.Y. Wang, Piecewise constant level set method for structural topology optimization. Int. J. Numer. Methods Eng.78 (2009) 379–402.
- Q. Xia and M.Y. Wang, Simultaneous optimization of the material properties and the topology of functionally graded structures. Comput. Aided Des.40 (2008) 660–675.
- S. Zhou and M.Y. Wang, Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct. Multidisc. Optim.33 (2007) 89–111.