Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain

Eugene Kramer; Ivonne Rivas; Bing-Yu Zhang

ESAIM: Control, Optimisation and Calculus of Variations (2013)

  • Volume: 19, Issue: 2, page 358-384
  • ISSN: 1292-8119

Abstract

top
In this paper, we study a class of Initial-Boundary Value Problems proposed by Colin and Ghidaglia for the Korteweg-de Vries equation posed on a bounded domain (0,L). We show that this class of Initial-Boundary Value Problems is locally well-posed in the classical Sobolev space Hs(0,L) for s > -3/4, which provides a positive answer to one of the open questions of Colin and Ghidaglia [Adv. Differ. Equ. 6 (2001) 1463–1492].

How to cite

top

Kramer, Eugene, Rivas, Ivonne, and Zhang, Bing-Yu. "Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain." ESAIM: Control, Optimisation and Calculus of Variations 19.2 (2013): 358-384. <http://eudml.org/doc/272905>.

@article{Kramer2013,
abstract = {In this paper, we study a class of Initial-Boundary Value Problems proposed by Colin and Ghidaglia for the Korteweg-de Vries equation posed on a bounded domain (0,L). We show that this class of Initial-Boundary Value Problems is locally well-posed in the classical Sobolev space Hs(0,L) for s &gt; -3/4, which provides a positive answer to one of the open questions of Colin and Ghidaglia [Adv. Differ. Equ. 6 (2001) 1463–1492].},
author = {Kramer, Eugene, Rivas, Ivonne, Zhang, Bing-Yu},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {The kortweg-de Vries equation; well-posedness; non-homogeneous boundary value problem; KdV; well posedness, non-homogeneous boundary value problems},
language = {eng},
number = {2},
pages = {358-384},
publisher = {EDP-Sciences},
title = {Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain},
url = {http://eudml.org/doc/272905},
volume = {19},
year = {2013},
}

TY - JOUR
AU - Kramer, Eugene
AU - Rivas, Ivonne
AU - Zhang, Bing-Yu
TI - Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2013
PB - EDP-Sciences
VL - 19
IS - 2
SP - 358
EP - 384
AB - In this paper, we study a class of Initial-Boundary Value Problems proposed by Colin and Ghidaglia for the Korteweg-de Vries equation posed on a bounded domain (0,L). We show that this class of Initial-Boundary Value Problems is locally well-posed in the classical Sobolev space Hs(0,L) for s &gt; -3/4, which provides a positive answer to one of the open questions of Colin and Ghidaglia [Adv. Differ. Equ. 6 (2001) 1463–1492].
LA - eng
KW - The kortweg-de Vries equation; well-posedness; non-homogeneous boundary value problem; KdV; well posedness, non-homogeneous boundary value problems
UR - http://eudml.org/doc/272905
ER -

References

top
  1. [1] T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems. Proc. R. Soc. London A272 (1972) 47–78. Zbl0229.35013MR427868
  2. [2] J.L. Bona, W.G. Pritchard and L.R. Scott, An evaluation of a model equation for water waves. Philos. Trans. Roy. Soc. London Ser. A302 (1981) 457–510. Zbl0497.76023MR633485
  3. [3] J.L. Bona, S.M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane. Trans. Amer. Math. Soc.354 (2002) 427–490. Zbl0988.35141MR1862556
  4. [4] J.L. Bona, S.M. Sun and B.-Y. Zhang, Forced oscillations of a damped korteweg-de Vries equation in a quarter plane. Commun. Partial Differ. Equ.5 (2003) 369–400. Zbl1054.35076MR1992355
  5. [5] J.L. Bona, S.M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation on a finite domain. Commun. Partial Differ. Equ.28 (2003) 1391–1436. Zbl1057.35049MR1998942
  6. [6] J.L. Bona, S.M. Sun and B.-Y. Zhang, Conditional and unconditional well posedness of nonlinear evolution equations. Adv. Differ. Equ.9 (2004) 241–265. Zbl1103.35092MR2100628
  7. [7] J.L. Bona, S.M. Sun and B.-Y. Zhang, Boundary smoothing properties of the Korteweg-de Vries equation in a quarter plane and applications. Dyn. Partial Differ. Equ.3 (2006) 1–69. Zbl1152.35099MR2221746
  8. [8] J.L. Bona, S.M. Sun and B.-Y. Zhang, Nonhomogeneous problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane. Ann. Henri Poincaré25 (2008) 1145–1185. Zbl1157.35090MR2466325
  9. [9] J.L. Bona, S.M. Sun and B.-Y. Zhang, Nonhomogeneous problem for the Korteweg-de Vries equation in a bounded domain II. J. Differ. Equ.247 (2009) 2558–2596. Zbl1181.35228MR2568064
  10. [10] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I : Shrödinger equations. Geom. Funct. Anal.3 (1993) 107–156. Zbl0787.35097MR1209299
  11. [11] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part II : the KdV-equation. Geom. Funct. Anal.3 (1993) 209–262. Zbl0787.35098MR1215780
  12. [12] B.A. Bubnov, Generalized boundary value problems for the Korteweg-de Vries equation in bounded domain. Differ. Equ.15 (1979) 17–21. Zbl0422.35069MR524931
  13. [13] B.A. Bubnov, Solvability in the large of nonlinear boundary-value problem for the Korteweg-de Vries equations. Differ. Equ.16 (1980) 24–30. Zbl0451.35066MR559805
  14. [14] E. Cerpa, Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain. SIAM J. Control Optim.46 (2007) 877–899. Zbl1147.93005MR2338431
  15. [15] E. Cerpa and E. Crépeau, Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain. Ann. Henri Poincaré26 (2009) 457–475. Zbl1158.93006MR2504039
  16. [16] T. Colin and J.-M. Ghidaglia, Un problème aux limites pour l’équation de Korteweg-de Vries sur un intervalle borné (French) [A boundary value problem for the Korteweg-de Vries equation on a bounded interval] Journées équations aux Drives Partielles, Saint-Jean-de-Monts, Exp. No. III, École Polytech., Palaiseau (1997), p. 10. Zbl1012.35072MR1482270
  17. [17] T. Colin and J.-M. Ghidaglia, Un problème mixte pour l’équation de Korteweg-de Vries sur un intervalle borné (French) [A mixed initial-boundary value problem for the Korteweg-de Vries equation on a bounded interval]. C. R. Acad. Sci. Paris Sér. I Math.324 (1997) 599–603. Zbl0879.35134MR1444001
  18. [18] T. Colin and J.-M. Ghidaglia, An initial-boundary-value problem fo the Korteweg-de Vries equation posed on a finite interval. Adv. Differ. Equ.6 (2001) 1463–1492. Zbl1022.35055MR1858429
  19. [19] T. Colin and M. Gisclon, An initial-boundary-value problem that approximate the quarter-plane problem for the Korteweg-de Vries equation. Nonlinear Anal.46 (2001) 869–892. Zbl1027.35111MR1859802
  20. [20] J.E. Colliander and C. Kenig, The generalized Korteweg-de Vries equation on the half line. Commun. Partial Differ. Equ.27 (2002) 2187–2266. Zbl1041.35064MR1944029
  21. [21] J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with a critical length. J. Eur. Math. Soc.6 (2004) 367–398. Zbl1061.93054MR2060480
  22. [22] A.V. Faminskii, On an initial boundary value problem in a bounded domain for the generalized Korteweg-de Vries equation, International Conference on Differential and Functional Differential Equations (Moscow, 1999). Funct. Differ. Equ. 8 (2001) 183–194. Zbl1054.35080MR1949998
  23. [23] A.V. Faminskii, Global well-posedness of two initial-boundary-value problems for the Korteweg-de Vries equation. Differ. Integral Equ.20 (2007) 601–642. Zbl1212.35409MR2319458
  24. [24] J.-M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time. J. Differ. Equ.74 (1988) 369–390. Zbl0668.35084
  25. [25] J.-M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations. J. Differ. Equ.110 (1994) 356–359. Zbl0805.35114MR1278375
  26. [26] J. Holmer, The initial-boundary value problem for the Korteweg-de Vries equation. Commun. Partial Differ. Equ.31 (2006) 1151–1190. Zbl1111.35062MR2254610
  27. [27] T. Kappeler and P. Topalov, Global well-posedness of KdV in H-1(T,R). Duke Math. J.135 (2006) 327–360. Zbl1106.35081MR2267286
  28. [28] T. Kato, On the Korteweg-de Vries equation. Manuscr. Math.28 (1979) 89–99. Zbl0415.35070
  29. [29] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equations. Advances in Mathematics Supplementary Studies, Stud. Appl. Math. 8 (1983) 93–128. Zbl0549.34001MR759907
  30. [30] C. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Amer. Math. Soc.4 (1991) 323–347. Zbl0737.35102
  31. [31] C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equations via the contraction principle. Commun. Pure Appl. Math.46 (1993) 527–620 Zbl0808.35128MR1211741
  32. [32] C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applicatios to the KdV equation. J. Amer. Math. Soc.9 (1996) 573–603. Zbl0848.35114MR1329387
  33. [33] V. Komornik, D.L. Russell and B.-Y. Zhang, Stabilization de l’equation de Korteweg-de Vries. C. R. Acad. Sci. Paris312 (1991) 841–843. Zbl0742.35058MR1108503
  34. [34] E.F. Kramer and B.-Y. Zhang, Nonhomogeneous boundary value problems for the Korteweg-de Vries equation on a bounded domain. J. Syst. Sci. Complex23 (2010) 499–526. Zbl1202.35229MR2679541
  35. [35] L. Monilet, A note on ill-posedness for the KdV equation. Differ. Integral Equ.24 (2011) 759–765. Zbl1249.35292MR2830706
  36. [36] L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers equation. Int. Math. Res. Not. (2002) 1979–2005. Zbl1031.35126MR1918236
  37. [37] L. Molinet and S. Vento, Sharp ill-posedness and well-posedness results for the KdV-Burgers equation : the periodic case. arXiv:10054805V1[Math AP] (2010). Zbl1292.35268MR2984054
  38. [38] A.F. Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping. ESAIM : COCV 11 (2005) 473–486. Zbl1148.35348MR2148854
  39. [39] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Appl. Math. Sci. 44 (1983). Zbl0516.47023MR710486
  40. [40] G. Perla-Menzala, C.F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping. Q. Appl. Math.60 (2002) 111–129. Zbl1039.35107MR1878262
  41. [41] I. Rivas, M. Usman and B.-Y. Zhang, Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-de Vries equation on a finite domain. Math. Control Rel. Fields1 (2011) 61–81. Zbl1219.35251MR2822685
  42. [42] L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM : COCV 2 (1997) 33–55. Zbl0873.93008MR1440078
  43. [43] L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation. SIAM J. Control Optim.45 (2006) 927–956. Zbl1116.35108MR2247720
  44. [44] L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation : recent progresses. J. Syst. Sci. Complex.22 (2009) 647–682. Zbl1300.93091MR2565262
  45. [45] D.L. Russell and B.-Y. Zhang, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain. SIAM J. Control Optim.31 (1993) 659–676. Zbl0771.93073MR1214759
  46. [46] D.L. Russell and B.-Y. Zhang, Smoothing and decay properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation. J. Math. Anal. Appl.190 (1995) 449–488. Zbl0845.35111MR1318405
  47. [47] L. Tartar, Interpolation non linéaire et régularité. J. Funct. Anal.9 (1972) 469–489. Zbl0241.46035MR310619
  48. [48] B.-Y. Zhang, Boundary stabilization of the Korteweg-de Vries equations, Proc. of International Conference on Control and Estimation of Distributed Parameter Systems : Nonlinear Phenomena. Vorau, Styria, Austria (1993). International Series of Numer. Math. 118 (1994) 371–389. Zbl0811.35133MR1313527
  49. [49] B.-Y. Zhang, A remark on the Cauchy problem for the Korteweg de-Vries equation on a periodic domain. Differ. Integral Equ.8 (1995) 1191–1204. Zbl0826.35114MR1325553
  50. [50] B.-Y. Zhang, Analyticity of solutions for the generalized Korteweg de-Vries equation with respect to their initial datum. SIAM J. Math. Anal.26 (1995) 1488–1513. Zbl0837.35135MR1356456
  51. [51] B.-Y. Zhang, Taylor series expansion for solutions of the Korteweg-de Vries equation with respect to their initial values. J. Func. Anal.129 (1995) 293–324. Zbl0835.35130MR1327180
  52. [52] B.-Y. Zhang, Exact boundary controllability of the Korteweg-de Vries equation. SIAM J. Control Optim.37 (1999) 543–565. Zbl0930.35160MR1670653

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.